PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Crystallization of ornithine acetyltransferase from yeast by counter-diffusion and preliminary X-ray study 
A study on the crystallization of ornithine acetyltransferase from yeast, catalysing the fifth step in microbial arginine synthesis, is presented. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either batch or hanging-drop techniques.
A study is presented on the crystallization of ornithine acetyltransferase from yeast, which catalyzes the fifth step in microbial arginine synthesis. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either the batch or hanging-drop techniques. This makes the difference between useless crystals and crystals that allow successful determination of the structure of the protein. The crystals belong to space group P4, with unit-cell parameters a = b = 66.98, c = 427.09 Å, and a data set was collected to 2.76 Å.
doi:10.1107/S1744309106050561
PMCID: PMC2225363  PMID: 17142921
ornithine acetyltransferase; counter-diffusion
2.  Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the C-­terminal domain of Ss-LrpB, a transcription regulator from Sulfolobus solfataricus  
The C-terminal domain of the transcriptional regulator Ss-LrpB from S. solfataricus was purified by affinity chromatography and crystallized. Crystals belong to space group P21212. A complete data set was collected to a resolution of 2 Å.
Ss-LrpB from Sulfolobus solfataricus P2 belongs to the bacterial/archaeal superfamily of Lrp-like (leucine-responsive regulatory protein-like) transcription regulators. The N-terminal DNA-binding domain contains a HTH motif and the C-terminal domain contains an αβ-sandwich (βαββαβ fold). The C-­terminal domain was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P21212, with unit-cell parameters a = 59.35, b = 74.86, c = 38.08 Å and a data set was collected to 2.0 Å resolution. Structure determination using a selenomethionine derivative is under way.
doi:10.1107/S1744309105032148
PMCID: PMC1978139  PMID: 16511214
Ss-LrpB; transcription regulators
3.  Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase 
Nucleic Acids Research  2006;34(6):1925-1934.
The structure of Bacillus subtilis TrmB (BsTrmB), the tRNA (m7G46) methyltransferase, was determined at a resolution of 2.1 Å. This is the first structure of a member of the TrmB family to be determined by X-ray crystallography. It reveals a unique variant of the Rossmann-fold methyltransferase (RFM) structure, with the N-terminal helix folded on the opposite site of the catalytic domain. The architecture of the active site and a computational docking model of BsTrmB in complex with the methyl group donor S-adenosyl-l-methionine and the tRNA substrate provide an explanation for results from mutagenesis studies of an orthologous enzyme from Escherichia coli (EcTrmB). However, unlike EcTrmB, BsTrmB is shown here to be dimeric both in the crystal and in solution. The dimer interface has a hydrophobic core and buries a potassium ion and five water molecules. The evolutionary analysis of the putative interface residues in the TrmB family suggests that homodimerization may be a specific feature of TrmBs from Bacilli, which may represent an early stage of evolution to an obligatory dimer.
doi:10.1093/nar/gkl116
PMCID: PMC1447647  PMID: 16600901

Results 1-3 (3)