PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  rpoD Gene Pyrosequencing for the Assessment of Pseudomonas Diversity in a Water Sample from the Woluwe River 
Applied and Environmental Microbiology  2014;80(15):4738-4744.
A water sample from a noncontaminated site at the source of the Woluwe River (Belgium) was analyzed by culture-dependent and -independent methods. Pseudomonas isolates were identified by sequencing and analysis of the rpoD gene. Culture-independent methods consisted of cloning and pyrosequencing of a Pseudomonas rpoD amplicon from total DNA extracted from the same sample and amplified with selective rpoD gene primers. Among a total of 14,540 reads, 6,228 corresponded to Pseudomonas rpoD gene sequences by a BLAST analysis in the NCBI database. The selection criteria for the reads were sequences longer than 400 bp, an average Q40 value greater than 25, and >85% identity with a Pseudomonas species. Of the 6,228 Pseudomonas rpoD sequences, 5,345 sequences met the established criteria for selection. Sequences were clustered by phylogenetic analysis and by use of the QIIME software package. Representative sequences of each cluster were assigned by BLAST analysis to a known Pseudomonas species when the identity with the type strain was greater than or equal to 96%. Twenty-six species distributed among 12 phylogenetic groups or subgroups within the genus were detected by pyrosequencing. Pseudomonas stutzeri, P. moraviensis, and P. simiae were the only cultured species not detected by pyrosequencing. The predominant phylogenetic group within the Pseudomonas genus was the P. fluorescens group, as determined by culture-dependent and -independent analyses. In all analyses, a high number of putative novel phylospecies was found: 10 were identified in the cultured strains and 246 were detected by pyrosequencing, indicating that the diversity of Pseudomonas species has not been fully described.
doi:10.1128/AEM.00412-14
PMCID: PMC4148809  PMID: 24858084
2.  Overexpression, purification, crystallization and crystallographic analysis of CopK of Cupriavidus metallidurans  
Overexpression, purification and crystallization of C. metallidurans CopK allowed the collection of a complete data set to 2.2 Å resolution.
CopK of Cupriavidus metallidurans is a 93-amino-acid protein whose mature form (73 amino acids) has been purified and crystallized by the hanging-drop vapour-diffusion method in 100 mM citrate pH 3.5, 200 mM Li2SO4, 20%(w/v) glycerol, 13%(w/v) PEG 8000. Crystals display orthorhombic symmetry, with unit-cell parameters a = 57.53, b = 128.65, c = 49.77 Å, and diffract to 2.2 Å resolution using synchrotron radiation.
doi:10.1107/S174430910502316X
PMCID: PMC1978110  PMID: 16511169
CopK; copper; Ralstonia; Cupriavidus metallidurans
3.  Formation of the conserved pseudouridine at position 55 in archaeal tRNA 
Nucleic Acids Research  2006;34(15):4293-4301.
Pseudouridine (Ψ) located at position 55 in tRNA is a nearly universally conserved RNA modification found in all three domains of life. This modification is catalyzed by TruB in bacteria and by Pus4 in eukaryotes, but so far the Ψ55 synthase has not been identified in archaea. In this work, we report the ability of two distinct pseudouridine synthases from the hyperthermophilic archaeon Pyrococcus furiosus to specifically modify U55 in tRNA in vitro. These enzymes are pfuCbf5, a protein known to play a role in RNA-guided modification of rRNA, and pfuPsuX, a previously uncharacterized enzyme that is not a member of the TruB/Pus4/Cbf5 family of pseudouridine synthases. pfuPsuX is hereafter renamed pfuPus10. Both enzymes specifically modify tRNA U55 in vitro but exhibit differences in substrate recognition. In addition, we find that in a heterologous in vivo system, pfuPus10 efficiently complements an Escherichia coli strain deficient in the bacterial Ψ55 synthase TruB. These results indicate that it is probable that pfuCbf5 or pfuPus10 (or both) is responsible for the introduction of pseudouridine at U55 in tRNAs in archaea. While we cannot unequivocally assign the function from our results, both possibilities represent unexpected functions of these proteins as discussed herein.
doi:10.1093/nar/gkl530
PMCID: PMC1616971  PMID: 16920741
4.  Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase 
Nucleic Acids Research  2006;34(6):1925-1934.
The structure of Bacillus subtilis TrmB (BsTrmB), the tRNA (m7G46) methyltransferase, was determined at a resolution of 2.1 Å. This is the first structure of a member of the TrmB family to be determined by X-ray crystallography. It reveals a unique variant of the Rossmann-fold methyltransferase (RFM) structure, with the N-terminal helix folded on the opposite site of the catalytic domain. The architecture of the active site and a computational docking model of BsTrmB in complex with the methyl group donor S-adenosyl-l-methionine and the tRNA substrate provide an explanation for results from mutagenesis studies of an orthologous enzyme from Escherichia coli (EcTrmB). However, unlike EcTrmB, BsTrmB is shown here to be dimeric both in the crystal and in solution. The dimer interface has a hydrophobic core and buries a potassium ion and five water molecules. The evolutionary analysis of the putative interface residues in the TrmB family suggests that homodimerization may be a specific feature of TrmBs from Bacilli, which may represent an early stage of evolution to an obligatory dimer.
doi:10.1093/nar/gkl116
PMCID: PMC1447647  PMID: 16600901
5.  A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase 
Nucleic Acids Research  2004;32(2):465-476.
The modified nucleoside 1-methyladenosine (m1A) is found in the T-loop of many tRNAs from organisms belonging to the three domains of life (Eukaryota, Bacteria, Archaea). In the T-loop of eukaryotic and bacterial tRNAs, m1A is present at position 58, whereas in archaeal tRNAs it is present at position(s) 58 and/or 57, m1A57 being the obligatory intermediate in the biosynthesis of 1-methylinosine (m1I57). In yeast, the formation of m1A58 is catalysed by the essential tRNA (m1A58) methyltransferase (MTase), a tetrameric enzyme that is composed of two types of subunits (Gcd14p and Gcd10p), whereas in the bacterium Thermus thermophilus the enzyme is a homotetramer of the TrmI polypeptide. Here, we report that the TrmI enzyme from the archaeon Pyrococcus abyssi is also a homotetramer. However, unlike the bacterial site-specific TrmI MTase, the P.abyssi enzyme is region-specific and catalyses the formation of m1A at two adjacent positions (57 and 58) in the T-loop of certain tRNAs. The stabilisation of P.abyssi TrmI at extreme temperatures involves intersubunit disulphide bridges that reinforce the tetrameric oligomerisation, as revealed by biochemical and crystallographic evidences. The origin and evolution of m1A MTases is discussed in the context of different hypotheses of the tree of life.
doi:10.1093/nar/gkh191
PMCID: PMC373318  PMID: 14739239
6.  The yggH Gene of Escherichia coli Encodes a tRNA (m7G46) Methyltransferase 
Journal of Bacteriology  2003;185(10):3238-3243.
We cloned, expressed, and purified the Escherichia coli YggH protein and show that it catalyzes the S-adenosyl-l-methionine-dependent formation of N7-methylguanosine at position 46 (m7G46) in tRNA. Additionally, we generated an E. coli strain with a disrupted yggH gene and show that the mutant strain lacks tRNA (m7G46) methyltransferase activity.
doi:10.1128/JB.185.10.3238-3243.2003
PMCID: PMC154064  PMID: 12730187
7.  Cloning and characterization of tRNA (m1A58) methyltransferase (TrmI) from Thermus thermophilus HB27, a protein required for cell growth at extreme temperatures 
Nucleic Acids Research  2003;31(8):2148-2156.
N1-methyladenosine (m1A) is found at position 58 in the T-loop of many tRNAs. In yeast, the formation of this modified nucleoside is catalyzed by the essential tRNA (m1A58) methyltransferase, a tetrameric enzyme that is composed of two types of subunits (Gcd14p and Gcd10p). In this report we describe the cloning, expression and characterization of a Gcd14p homolog from the hyperthermophilic bacterium Thermus thermophilus. The purified recombinant enzyme behaves as a homotetramer of ∼150 kDa by gel filtration and catalyzes the site- specific formation of m1A at position 58 of the T-loop of tRNA in the absence of any other complementary protein. S-adenosylmethionine is used as donor of the methyl group. Thus, we propose to name the bacterial enzyme TrmI and accordingly its structural gene trmI. These results provide a key evolutionary link between the functionally characterized two-component eukaryotic enzyme and the recently described crystal structure of an uncharacterized, putative homotetrameric methyltransferase Rv2118c from Mycobacterium tuberculosis. Interest ingly, inactivation of the T.thermophilus trmI gene results in a thermosensitive phenotype (growth defect at 80°C), which suggests a role of the N1-methylation of tRNA adenosine-58 in adaptation of life to extreme temperatures.
PMCID: PMC153742  PMID: 12682365

Results 1-7 (7)