Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Cellular localization and dynamics of the Mrr type IV restriction endonuclease of Escherichia coli 
Nucleic Acids Research  2014;42(6):3908-3918.
In this study, we examined the intracellular whereabouts of Mrr, a cryptic type IV restriction endonuclease of Escherichia coli K12, in response to different conditions. In absence of stimuli triggering its activity, Mrr was found to be strongly associated with the nucleoid as a number of discrete foci, suggesting the presence of Mrr hotspots on the chromosome. Previously established elicitors of Mrr activity, such as exposure to high (hydrostatic) pressure (HP) or expression of the HhaII methyltransferase, both caused nucleoid condensation and an unexpected coalescence of Mrr foci. However, although the resulting Mrr/nucleoid complex was stable when triggered with HhaII, it tended to be only short-lived when elicited with HP. Moreover, HP-mediated activation of Mrr typically led to cellular blebbing, suggesting a link between chromosome and cellular integrity. Interestingly, Mrr variants could be isolated that were specifically compromised in either HhaII- or HP-dependent activation, underscoring a mechanistic difference in the way both triggers activate Mrr. In general, our results reveal that Mrr can take part in complex spatial distributions on the nucleoid and can be engaged in distinct modes of activity.
PMCID: PMC3973329  PMID: 24423871
2.  Evidence for an evolutionary antagonism between Mrr and Type III modification systems 
Nucleic Acids Research  2011;39(14):5991-6001.
The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.
PMCID: PMC3152355  PMID: 21504983

Results 1-2 (2)