PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("ota, shiroki")
1.  Human genetic research, race, ethnicity and the labeling of populations: recommendations based on an interdisciplinary workshop in Japan 
BMC Medical Ethics  2014;15:33.
Background
A challenge in human genome research is how to describe the populations being studied. The use of improper and/or imprecise terms has the potential to both generate and reinforce prejudices and to diminish the clinical value of the research. The issue of population descriptors has not attracted enough academic attention outside North America and Europe. In January 2012, we held a two-day workshop, the first of its kind in Japan, to engage in interdisciplinary dialogue between scholars in the humanities, social sciences, medical sciences, and genetics to begin an ongoing discussion of the social and ethical issues associated with population descriptors.
Discussion
Through the interdisciplinary dialogue, we confirmed that the issue of race, ethnicity and genetic research has not been extensively discussed in certain Asian communities and other regions. We have found, for example, the continued use of the problematic term, “Mongoloid” or continental terms such as “European,” “African,” and “Asian,” as population descriptors in genetic studies. We, therefore, introduce guidelines for reporting human genetic studies aimed at scientists and researchers in these regions.
Conclusion
We need to anticipate the various potential social and ethical problems entailed in population descriptors. Scientists have a social responsibility to convey their research findings outside of their communities as accurately as possible, and to consider how the public may perceive and respond to the descriptors that appear in research papers and media articles.
doi:10.1186/1472-6939-15-33
PMCID: PMC4018961  PMID: 24758583
Population descriptors; Ethics; Labeling; Race; Ethnicity; Japanese; Asian; Mongoloid
2.  Dysbiosis of Salivary Microbiota in Inflammatory Bowel Disease and Its Association With Oral Immunological Biomarkers 
Analysis of microbiota in various biological and environmental samples under a variety of conditions has recently become more practical due to remarkable advances in next-generation sequencing. Changes leading to specific biological states including some of the more complex diseases can now be characterized with relative ease. It is known that gut microbiota is involved in the pathogenesis of inflammatory bowel disease (IBD), mainly Crohn's disease and ulcerative colitis, exhibiting symptoms in the gastrointestinal tract. Recent studies also showed increased frequency of oral manifestations among IBD patients, indicating aberrations in the oral microbiota. Based on these observations, we analyzed the composition of salivary microbiota of 35 IBD patients by 454 pyrosequencing of the bacterial 16S rRNA gene and compared it with that of 24 healthy controls (HCs). The results showed that Bacteroidetes was significantly increased with a concurrent decrease in Proteobacteria in the salivary microbiota of IBD patients. The dominant genera, Streptococcus, Prevotella, Neisseria, Haemophilus, Veillonella, and Gemella, were found to largely contribute to dysbiosis (dysbacteriosis) observed in the salivary microbiota of IBD patients. Analysis of immunological biomarkers in the saliva of IBD patients showed elevated levels of many inflammatory cytokines and immunoglobulin A, and a lower lysozyme level. A strong correlation was shown between lysozyme and IL-1β levels and the relative abundance of Streptococcus, Prevotella, Haemophilus and Veillonella. Our data demonstrate that dysbiosis of salivary microbiota is associated with inflammatory responses in IBD patients, suggesting that it is possibly linked to dysbiosis of their gut microbiota.
doi:10.1093/dnares/dst037
PMCID: PMC3925391  PMID: 24013298
Crohn's disease; ulcerative colitis; salivary microbiota; 16S rRNA; pyrosequencing
3.  Color Vision Variation as Evidenced by Hybrid L/M Opsin Genes in Wild Populations of Trichromatic Alouatta New World Monkeys 
Platyrrhine (New World) monkeys possess highly polymorphic color vision owing to allelic variation of the single-locus L/M opsin gene on the X chromosome. Most species consist of female trichromats and female and male dichromats. Howlers (genus Alouatta) are an exception; they are considered to be routinely trichromatic with L and M opsin genes juxtaposed on the X chromosome, as seen in catarrhine primates (Old World monkeys, apes, and humans). Yet it is not known whether trichromacy is invariable in howlers. We examined L/M opsin variation in wild howler populations in Costa Rica and Nicaragua (Alouatta palliata) and Belize (A. pigra), using fecal DNA. We surveyed exon 5 sequences (containing the diagnostic 277th and 285th residues for λmax) for 8 and 18 X chromosomes from Alouatta palliata and A. pigra, respectively. The wavelengths of maximal absorption (λmax) of the reconstituted L and M opsin photopigments were 564 nm and 532 nm, respectively, in both species. We found one M–L hybrid sequence with a recombinant 277/285 haplotype in Alouatta palliata and two L–M hybrid sequences in A. pigra. The λmax values of the reconstituted hybrid photopigments were in the range of 546~554 nm, which should result in trichromat phenotypes comparable to those found in other New World monkey species. Our finding of color vision variation due to high frequencies of L/M hybrid opsin genes in howlers challenges the current view that howlers are routine and uniform trichromats. These results deepen our understanding of the evolutionary significance of color vision polymorphisms and routine trichromacy and emphasize the need for further assessment of opsin gene variation as well as behavioral differences among subtypes of trichromacy.
Electronic supplementary material
The online version of this article (doi:10.1007/s10764-013-9705-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s10764-013-9705-9
PMCID: PMC3915081  PMID: 24523565
Anomalous trichromacy; Color vision; Howlers; Polymorphism
4.  Crohn's Disease Risk Alleles on the NOD2 Locus Have Been Maintained by Natural Selection on Standing Variation 
Molecular Biology and Evolution  2012;29(6):1569-1585.
Risk alleles for complex diseases are widely spread throughout human populations. However, little is known about the geographic distribution and frequencies of risk alleles, which may contribute to differences in disease susceptibility and prevalence among populations. Here, we focus on Crohn's disease (CD) as a model for the evolutionary study of complex disease alleles. Recent genome-wide association studies and classical linkage analyses have identified more than 70 susceptible genomic regions for CD in Europeans, but only a few have been confirmed in non-European populations. Our analysis of eight European-specific susceptibility genes using HapMap data shows that at the NOD2 locus the CD-risk alleles are linked with a haplotype specific to CEU at a frequency that is significantly higher compared with the entire genome. We subsequently examined nine global populations and found that the CD-risk alleles spread through hitchhiking with a high-frequency haplotype (H1) exclusive to Europeans. To examine the neutrality of NOD2, we performed phylogenetic network analyses, coalescent simulation, protein structural prediction, characterization of mutation patterns, and estimations of population growth and time to most recent common ancestor (TMRCA). We found that while H1 was significantly prevalent in European populations, the H1 TMRCA predated human migration out of Africa. H1 is likely to have undergone negative selection because 1) the root of H1 genealogy is defined by a preexisting amino acid substitution that causes serious conformational changes to the NOD2 protein, 2) the haplotype has almost become extinct in Africa, and 3) the haplotype has not been affected by the recent European expansion reflected in the other haplotypes. Nevertheless, H1 has survived in European populations, suggesting that the haplotype is advantageous to this group. We propose that several CD-risk alleles, which destabilize and disrupt the NOD2 protein, have been maintained by natural selection on standing variation because the deleterious haplotype of NOD2 is advantageous in diploid individuals due to heterozygote advantage and/or intergenic interactions.
doi:10.1093/molbev/mss006
PMCID: PMC3697811  PMID: 22319155
Crohn's disease; NOD2; hitchhiking effect; natural selection; standing variation; mildly deleterious mutation
5.  Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes 
Background
Routine trichromatic color vision is a characteristic feature of catarrhines (humans, apes and Old World monkeys). This is enabled by L and M opsin genes arrayed on the X chromosome and an autosomal S opsin gene. In non-human catarrhines, genetic variation affecting the color vision phenotype is reported to be absent or rare in both L and M opsin genes, despite the suggestion that gene conversion has homogenized the two genes. However, nucleotide variation of both introns and exons among catarrhines has only been examined in detail for the L opsin gene of humans and chimpanzees. In the present study, we examined the nucleotide variation of gibbon (Catarrhini, Hylobatidae) L and M opsin genes. Specifically, we focused on the 3.6~3.9-kb region that encompasses the centrally located exon 3 through exon 5, which encode the amino acid sites functional for the spectral tuning of the genes.
Results
Among 152 individuals representing three genera (Hylobates, Nomascus and Symphalangus), all had both L and M opsin genes and no L/M hybrid genes. Among 94 individuals subjected to the detailed DNA sequencing, the nucleotide divergence between L and M opsin genes in the exons was significantly higher than the divergence in introns in each species. The ratio of the inter-LM divergence to the intra-L/M polymorphism was significantly lower in the introns than that in synonymous sites. When we reconstructed the phylogenetic tree using the exon sequences, the L/M gene duplication was placed in the common ancestor of catarrhines, whereas when intron sequences were used, the gene duplications appeared multiple times in different species. Using the GENECONV program, we also detected that tracts of gene conversions between L and M opsin genes occurred mostly within the intron regions.
Conclusions
These results indicate the historical accumulation of gene conversions between L and M opsin genes in the introns in gibbons. Our study provides further support for the homogenizing role of gene conversion between the L and M opsin genes and for the purifying selection against such homogenization in the central exons to maintain the spectral difference between L and M opsins in non-human catarrhines.
doi:10.1186/1471-2148-11-312
PMCID: PMC3213168  PMID: 22017819
6.  Medaka: a promising model animal for comparative population genomics 
BMC Research Notes  2009;2:88.
Background
Within-species genome diversity has been best studied in humans. The international HapMap project has revealed a tremendous amount of single-nucleotide polymorphisms (SNPs) among humans, many of which show signals of positive selection during human evolution. In most of the cases, however, functional differences between the alleles remain experimentally unverified due to the inherent difficulty of human genetic studies. It would therefore be highly useful to have a vertebrate model with the following characteristics: (1) high within-species genetic diversity, (2) a variety of gene-manipulation protocols already developed, and (3) a completely sequenced genome. Medaka (Oryzias latipes) and its congeneric species, tiny fresh-water teleosts distributed broadly in East and Southeast Asia, meet these criteria.
Findings
Using Oryzias species from 27 local populations, we conducted a simple screening of nonsynonymous SNPs for 11 genes with apparent orthology between medaka and humans. We found medaka SNPs for which the same sites in human orthologs are known to be highly differentiated among the HapMap populations. Importantly, some of these SNPs show signals of positive selection.
Conclusion
These results indicate that medaka is a promising model system for comparative population genomics exploring the functional and adaptive significance of allelic differentiations.
doi:10.1186/1756-0500-2-88
PMCID: PMC2683866  PMID: 19426554
7.  Authors' Reply 
PLoS Biology  2005;3(8):e270.
doi:10.1371/journal.pbio.0030270
PMCID: PMC1187861
8.  Recent Origin and Cultural Reversion of a Hunter–Gatherer Group 
PLoS Biology  2005;3(3):e71.
Contemporary hunter–gatherer groups are often thought to serve as models of an ancient lifestyle that was typical of human populations prior to the development of agriculture. Patterns of genetic variation in hunter–gatherer groups such as the !Kung and African Pygmies are consistent with this view, as they exhibit low genetic diversity coupled with high frequencies of divergent mtDNA types not found in surrounding agricultural groups, suggesting long-term isolation and small population sizes. We report here genetic evidence concerning the origins of the Mlabri, an enigmatic hunter–gatherer group from northern Thailand. The Mlabri have no mtDNA diversity, and the genetic diversity at Y-chromosome and autosomal loci are also extraordinarily reduced in the Mlabri. Genetic, linguistic, and cultural data all suggest that the Mlabri were recently founded, 500–800 y ago, from a very small number of individuals. Moreover, the Mlabri appear to have originated from an agricultural group and then adopted a hunting–gathering subsistence mode. This example of cultural reversion from agriculture to a hunting–gathering lifestyle indicates that contemporary hunter–gatherer groups do not necessarily reflect a pre-agricultural lifestyle.
Genes, language and culture reveal that the Mlabri reverted from an agricultural to a hunter-gatherer lifestyle, suggesting that hunter-gatherer groups might not always represent the pre- agricultural lifestyle of humans
doi:10.1371/journal.pbio.0030071
PMCID: PMC1044832  PMID: 15736978

Results 1-8 (8)