Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  ArdA proteins from different mobile genetic elements can bind to the EcoKI Type I DNA methyltransferase of E. coli K12☆ 
Biochimica et Biophysica Acta  2014;1844(3):505-511.
Anti-restriction and anti-modification (anti-RM) is the ability to prevent cleavage by DNA restriction–modification (RM) systems of foreign DNA entering a new bacterial host. The evolutionary consequence of anti-RM is the enhanced dissemination of mobile genetic elements. Homologues of ArdA anti-RM proteins are encoded by genes present in many mobile genetic elements such as conjugative plasmids and transposons within bacterial genomes. The ArdA proteins cause anti-RM by mimicking the DNA structure bound by Type I RM enzymes. We have investigated ArdA proteins from the genomes of Enterococcus faecalis V583, Staphylococcus aureus Mu50 and Bacteroides fragilis NCTC 9343, and compared them to the ArdA protein expressed by the conjugative transposon Tn916. We find that despite having very different structural stability and secondary structure content, they can all bind to the EcoKI methyltransferase, a core component of the EcoKI Type I RM system. This finding indicates that the less structured ArdA proteins become fully folded upon binding. The ability of ArdA from diverse mobile elements to inhibit Type I RM systems from other bacteria suggests that they are an advantage for transfer not only between closely-related bacteria but also between more distantly related bacterial species.
•Diverse ArdA proteins all target the EcoKI Type I DNA modification enzyme.•ArdA proteins have variable secondary structure content.•ArdA all bind equally well to EcoKI despite stability variations.
PMCID: PMC3969726  PMID: 24368349
RM, restriction–modification; anti-RM, antirestriction/antimodification; MGE, mobile genetic element; MTase, modification methyltransferase; M subunit, modification subunit; S subunit, sequence specificity subunit; Orf, open reading frame; CD, circular dichroism; GuCl, guanidinium chloride; 2-ME, 2-mercaptoethanol; SEC, size exclusion chromatography; Kd, dissociation constant; DNA methyltransferase; ArdA protein; DNA mimic; Horizontal gene transfer
2.  Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations 
Nucleic Acids Research  2013;41(15):7472-7484.
A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA.
PMCID: PMC3753647  PMID: 23771140
3.  Removal of a frameshift between the hsdM and hsdS genes of the EcoKI Type IA DNA restriction and modification system produces a new type of system and links the different families of Type I systems 
Nucleic Acids Research  2012;40(21):10916-10924.
The EcoKI DNA methyltransferase is a trimeric protein comprised of two modification subunits (M) and one sequence specificity subunit (S). This enzyme forms the core of the EcoKI restriction/modification (RM) enzyme. The 3′ end of the gene encoding the M subunit overlaps by 1 nt the start of the gene for the S subunit. Translation from the two different open reading frames is translationally coupled. Mutagenesis to remove the frameshift and fuse the two subunits together produces a functional RM enzyme in vivo with the same properties as the natural EcoKI system. The fusion protein can be purified and forms an active restriction enzyme upon addition of restriction subunits and of additional M subunit. The Type I RM systems are grouped into families, IA to IE, defined by complementation, hybridization and sequence similarity. The fusion protein forms an evolutionary intermediate form lying between the Type IA family of RM enzymes and the Type IB family of RM enzymes which have the frameshift located at a different part of the gene sequence.
PMCID: PMC3510504  PMID: 23002145
4.  Exploring the DNA mimicry of the Ocr protein of phage T7 
Nucleic Acids Research  2012;40(16):8129-8143.
DNA mimic proteins have evolved to control DNA-binding proteins by competing with the target DNA for binding to the protein. The Ocr protein of bacteriophage T7 is the most studied DNA mimic and functions to block the DNA-binding groove of Type I DNA restriction/modification enzymes. This binding prevents the enzyme from cleaving invading phage DNA. Each 116 amino acid monomer of the Ocr dimer has an unusual amino acid composition with 34 negatively charged side chains but only 6 positively charged side chains. Extensive mutagenesis of the charges of Ocr revealed a regression of Ocr activity from wild-type activity to partial activity then to variants inactive in antirestriction but deleterious for cell viability and lastly to totally inactive variants with no deleterious effect on cell viability. Throughout the mutagenesis the Ocr mutant proteins retained their folding. Our results show that the extreme bias in charged amino acids is not necessary for antirestriction activity but that less charged variants can affect cell viability by leading to restriction proficient but modification deficient cell phenotypes.
PMCID: PMC3439906  PMID: 22684506
5.  An investigation of the structural requirements for ATP hydrolysis and DNA cleavage by the EcoKI Type I DNA restriction and modification enzyme 
Nucleic Acids Research  2011;39(17):7667-7676.
Type I DNA restriction/modification systems are oligomeric enzymes capable of switching between a methyltransferase function on hemimethylated host DNA and an endonuclease function on unmethylated foreign DNA. They have long been believed to not turnover as endonucleases with the enzyme becoming inactive after cleavage. Cleavage is preceded and followed by extensive ATP hydrolysis and DNA translocation. A role for dissociation of subunits to allow their reuse has been proposed for the EcoR124I enzyme. The EcoKI enzyme is a stable assembly in the absence of DNA, so recycling was thought impossible. Here, we demonstrate that EcoKI becomes unstable on long unmethylated DNA; reuse of the methyltransferase subunits is possible so that restriction proceeds until the restriction subunits have been depleted. We observed that RecBCD exonuclease halts restriction and does not assist recycling. We examined the DNA structure required to initiate ATP hydrolysis by EcoKI and find that a 21-bp duplex with single-stranded extensions of 12 bases on either side of the target sequence is sufficient to support hydrolysis. Lastly, we discuss whether turnover is an evolutionary requirement for restriction, show that the ATP hydrolysis is not deleterious to the host cell and discuss how foreign DNA occasionally becomes fully methylated by these systems.
PMCID: PMC3177214  PMID: 21685455
6.  Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes 
Research highlights
► Successful fusion of GFP to M.EcoKI DNA methyltransferase. ► GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. ► FRET confirms structural model of M.EcoKI bound to DNA.
We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Förster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.
PMCID: PMC2914225  PMID: 20599730
DNA restriction/modification; DNA methyltransferase; Forster resonance energy transfer; Time-resolved fluorescence anisotropy; Time-resolved fluorescence; Green fluorescent protein
7.  Dissection of the DNA Mimicry of the Bacteriophage T7 Ocr Protein using Chemical Modification 
Journal of Molecular Biology  2009;391(3):565-576.
The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an ∼ 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove ∼ 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to ∼ 800-fold.
PMCID: PMC2806950  PMID: 19523474
Ocr, overcome classical restriction; R/M, restriction/modification; EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; HOBt, hydroxybenzotriazole; MS, mass spectrometry; MALDI-TOF, matrix-assisted laser desorption/ionization time of flight; FT-ICR, Fourier transform ion cyclotron resonance; GdmCl, guanidinium hydrochloride; SAM, S-adenosyl-L-methionine; ITC, isothermal titration calorimetry; WT, wild type; DNA mimic; chemical modification; restriction/modification system
8.  Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance 
Nucleic Acids Research  2009;37(15):4887-4897.
The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha–beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems.
PMCID: PMC2731889  PMID: 19506028
9.  Atomic force microscopy of the EcoKI Type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping 
Nucleic Acids Research  2009;37(6):2053-2063.
Atomic force microscopy (AFM) allows the study of single protein–DNA interactions such as those observed with the Type I Restriction–Modification systems. The mechanisms employed by these systems are complicated and understanding them has proved problematic. It has been known for years that these enzymes translocate DNA during the restriction reaction, but more recent AFM work suggested that the archetypal EcoKI protein went through an additional dimerization stage before the onset of translocation. The results presented here extend earlier findings confirming the dimerization. Dimerization is particularly common if the DNA molecule contains two EcoKI recognition sites. DNA loops with dimers at their apex form if the DNA is sufficiently long, and also form in the presence of ATPγS, a non-hydrolysable analogue of the ATP required for translocation, indicating that the looping is on the reaction pathway of the enzyme. Visualization of specific DNA loops in the protein–DNA constructs was achieved by improved sample preparation and analysis techniques. The reported dimerization and looping mechanism is unlikely to be exclusive to EcoKI, and offers greater insight into the detailed functioning of this and other higher order assemblies of proteins operating by bringing distant sites on DNA into close proximity via DNA looping.
PMCID: PMC2665228  PMID: 19223329
10.  The structure of M.EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction protein 
Nucleic Acids Research  2008;37(3):762-770.
Type-I DNA restriction–modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M2S1 methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.
PMCID: PMC2647291  PMID: 19074193
11.  Mutations of the domain forming the dimeric interface of the ArdA protein affect dimerization and antimodification activity but not antirestriction activity 
The Febs Journal  2013;280(19):4903-4914.
ArdA antirestriction proteins are encoded by genes present in many conjugative plasmids and transposons within bacterial genomes. Antirestriction is the ability to prevent cleavage of foreign incoming DNA by restriction-modification (RM) systems. Antimodification, the ability to inhibit modification by the RM system, can also be observed with some antirestriction proteins. As these mobile genetic elements can transfer antibiotic resistance genes, the ArdA proteins assist their spread. The consequence of antirestriction is therefore the enhanced dissemination of mobile genetic elements. ArdA proteins cause antirestriction by mimicking the DNA structure bound by Type I RM enzymes. The crystal structure of ArdA showed it to be a dimeric protein with a highly elongated curved cylindrical shape [McMahon SA et al. (2009) Nucleic Acids Res37, 4887–4897]. Each monomer has three domains covered with negatively charged side chains and a very small interface with the other monomer. We investigated the role of the domain forming the dimer interface for ArdA activity via site-directed mutagenesis. The antirestriction activity of ArdA was maintained when up to seven mutations per monomer were made or the interface was disrupted such that the protein could only exist as a monomer. The antimodification activity of ArdA was lost upon mutation of this domain. The ability of the monomeric form of ArdA to function in antirestriction suggests, first, that it can bind independently to the restriction subunit or the modification subunits of the RM enzyme, and second, that the many ArdA homologues with long amino acid extensions, present in sequence databases, may be active in antirestriction.
Structured digital abstract
ArdA and ArdA bind by molecular sieving (1, 2)
ArdA and ArdA bind by cosedimentation in solution (1, 2)
PMCID: PMC3906837  PMID: 23910724
antirestriction; ArdA; horizontal gene transfer; restriction enzyme; Tn916

Results 1-11 (11)