PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A Phylogeny of the Family Poritidae (Cnidaria, Scleractinia) Based on Molecular and Morphological Analyses 
PLoS ONE  2014;9(5):e98406.
The family Poritidae formerly included 6 genera: Alveopora, Goniopora, Machadoporites, Porites, Poritipora, and Stylaraea. Morphologically, the genera can be differentiated based on the number of tentacles, the number of septa and their arrangement, the length of the polyp column, and the diameter of the corallites. However, the phylogenetic relationships within and between the genera are unknown or contentious. On the one hand, Alveopora has been transferred to the Acroporidae recently because it was shown to be more closely related to this family than to the Poritidae by previous molecular studies. On the other hand, Goniopora is morphologically similar to 2 recently described genera, Machadoporites and Poritipora, particularly with regard to the number of septa (approximately 24), but they have not yet been investigated at the molecular level. In this study, we analyzed 93 samples from all 5 poritid genera and Alveopora using 2 genetic markers (the barcoding region of the mitochondrial COI and the ITS region of the nuclear rDNA) to investigate their phylogenetic relationships and to revise their taxonomy. The reconstructed molecular trees confirmed that Alveopora is genetically distant from all poritid genera but closely related to the family Acroporidae, whereas the other genera are genetically closely related. The molecular trees also revealed that Machadoporites and Poritipora were indistinguishable from Goniopora. However, Goniopora stutchburyi was genetically isolated from the other congeneric species and formed a sister group to Goniopora together with Porites and Stylaraea, thus suggesting that 24 septa could be an ancestral feature in the Poritidae. Based on these data, we move G. stutchburyi into a new genus, Bernardpora gen. nov., whereas Machadoporites and Poritipora are merged with Goniopora.
doi:10.1371/journal.pone.0098406
PMCID: PMC4037213  PMID: 24871224
2.  Mitochondrial Genome Rearrangements in the Scleractinia/Corallimorpharia Complex: Implications for Coral Phylogeny 
Genome Biology and Evolution  2014;6(5):1086-1095.
Corallimorpharia is a small Order of skeleton-less animals that is closely related to the reef-building corals (Scleractinia) and of fundamental interest in the context of understanding the potential impacts of climate change in the future on coral reefs. The relationship between the nominal Orders Corallimorpharia and Scleractinia is controversial—the former is either the closest outgroup to the Scleractinia or alternatively is derived from corals via skeleton loss. This latter scenario, the “naked coral” hypothesis, is strongly supported by analyses based on mitochondrial (mt) protein sequences, whereas the former is equally strongly supported by analyses of mt nucleotide sequences. The “naked coral” hypothesis seeks to link skeleton loss in the putative ancestor of corallimorpharians with a period of elevated oceanic CO2 during the Cretaceous, leading to the idea that these skeleton-less animals may be harbingers for the fate of coral reefs under global climate change. In an attempt to better understand their evolutionary relationships, we examined mt genome organization in a representative range (12 species, representing 3 of the 4 extant families) of corallimorpharians and compared these patterns with other Hexacorallia. The most surprising finding was that mt genome organization in Corallimorphus profundus, a deep-water species that is the most scleractinian-like of all corallimorpharians on the basis of morphology, was much more similar to the common scleractinian pattern than to those of other corallimorpharians. This finding is consistent with the idea that C. profundus represents a key position in the coral <-> corallimorpharian transition.
doi:10.1093/gbe/evu084
PMCID: PMC4040992  PMID: 24769753
naked coral hypothesis; gene order; mitochondrial genome; coral evolution
3.  Comparative Embryology of Eleven Species of Stony Corals (Scleractinia) 
PLoS ONE  2013;8(12):e84115.
A comprehensive understanding of coral reproduction and development is needed because corals are threatened in many ways by human activity. Major threats include the loss of their photosynthetic symbionts (Symbiodinium) caused by rising temperatures (bleaching), reduced ability to calcify caused by ocean acidification, increased storm severity associated with global climate change and an increase in predators caused by runoff from human agricultural activity. In spite of these threats, detailed descriptions of embryonic development are not available for many coral species. The current consensus is that there are two major groups of stony corals, the "complex" and the "robust". In this paper we describe the embryonic development of four "complex" species, Pseudosiderastrea tayamai, Galaxea fascicularis, Montipora hispida, and Pavona Decussata, and seven "robust" species, Oulastrea crispata, Platygyra contorta, Favites abdita, Echinophyllia aspera, Goniastrea favulus, Dipsastraea speciosa (previously Favia speciosa), and Phymastrea valenciennesi (previously Montastrea valenciennesi). Data from both histologically sectioned embryos and whole mounts are presented. One apparent difference between these two major groups is that before gastrulation the cells of the complex corals thus far described (mainly Acropora species) spread and flatten to produce the so-called prawn chip, which lacks a blastocoel. Our present broad survey of robust and complex corals reveals that prawn chip formation is not a synapomorphy of complex corals, as Pavona Decussata does not form a prawn chip and has a well-developed blastocoel. Although prawn chip formation cannot be used to separate the two clades, none of the robust corals which we surveyed has such a stage. Many robust coral embryos pass through two periods of invagination, separated by a return to a spherical shape. However, only the second of these periods is associated with endoderm formation. We have therefore termed the first invagination a pseudo-blastopore.
doi:10.1371/journal.pone.0084115
PMCID: PMC3867500  PMID: 24367633
4.  Possible Natural Hybridization of Two Morphologically Distinct Species of Acropora (Cnidaria, Scleractinia) in the Pacific: Fertilization and Larval Survival Rates 
PLoS ONE  2013;8(2):e56701.
Natural hybridization of corals in the Indo-Pacific has been considered rather rare. However, field studies have observed many corals with intermediate interspecific or unusual morphologies. Given that the existence of F1 hybrids with intermediate interspecific morphologies has been proven in the Caribbean, hybrids may also inhabit the Indo-Pacific and occur more frequently than expected. In this study, we focused on two morphologically different species, Acropora florida and A. intermedia, and performed crossing experiments at Akajima Island, Japan. Results showed that these species could hybridize in both directions via eggs and sperm, but that fertilization rates significantly differed according to which species provided eggs. These results are similar to those reported from the Caribbean. Although all embryos developed normally to the planular larval stage, the developmental processes of some hybrid embryos were delayed by approximately 1 h compared with conspecific embryos, suggesting that fertilization occurred 1 h later in interspecific crosses than in intraspecific crosses. More successful hybridization could occur under conditions with low numbers of conspecific colonies. Additionally, a comparison of survival rates between hybrid and intraspecific larvae revealed that intra- and interspecific larvae produced from eggs of A. florida survived for significantly longer than those produced from eggs of A. intermedia. Considering these data, under specific conditions, hybrids can be expected to be produced and survive in nature in the Pacific. Furthermore, we identified one colony with intermediate morphology between A. florida and A. intermedia in the field. This colony was fertilized only by eggs of A. florida, with high fertilization rates, suggesting that this colony would be a hybrid of these two species and might be backcrossed.
doi:10.1371/journal.pone.0056701
PMCID: PMC3573024  PMID: 23457605
5.  Cleaning up the 'Bigmessidae': Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae 
Background
Molecular phylogenetic studies on scleractinian corals have shown that most taxa are not reflective of their evolutionary histories. Based principally on gross morphology, traditional taxonomy suffers from the lack of well-defined and homologous characters that can sufficiently describe scleractinian diversity. One of the most challenging clades recovered by recent analyses is 'Bigmessidae', an informal grouping that comprises four conventional coral families, Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae, interspersed among one another with no apparent systematic pattern. There is an urgent need for taxonomic revisions in this clade, but it is vital to first establish phylogenetic relationships within the group. In this study, we reconstruct the evolutionary history of 'Bigmessidae' based on five DNA sequence markers gathered from 76 of the 132 currently recognized species collected from five reef regions in the central Indo-Pacific and the Atlantic.
Results
We present a robust molecular phylogeny of 'Bigmessidae' based on the combined five-gene data, achieving a higher degree of resolution compared to previous analyses. Two Pacific species presumed to be in 'Bigmessidae' are more closely related to outgroup clades, suggesting that other unsampled taxa have unforeseen affinities. As expected, nested within 'Bigmessidae' are four conventional families as listed above, and relationships among them generally corroborate previous molecular analyses. Our more resolved phylogeny supports a close association of Hydnophora (Merulinidae) with Favites + Montastraea (Faviidae), rather than with the rest of Merulinidae, i.e., Merulina and Scapophyllia. Montastraea annularis, the only Atlantic 'Bigmessidae' is sister to Cyphastrea, a grouping that can be reconciled by their septothecal walls, a microstructural feature of the skeleton determined by recent morphological work. Characters at the subcorallite scale appear to be appropriate synapomorphies for other subclades, which cannot be explained using macromorphology. Indeed, wide geographic sampling here has revealed more instances of possible cryptic taxa confused by evolutionary convergence of gross coral morphology.
Conclusions
Numerous examples of cryptic taxa determined in this study support the assertion that diversity estimates of scleractinian corals are erroneous. Fortunately, the recovery of most 'Bigmessidae' genera with only minor degrees of paraphyly offers some hope for impending taxonomic amendments. Subclades are well defined and supported by subcorallite morphological features, providing a robust framework for further systematic work.
doi:10.1186/1471-2148-11-37
PMCID: PMC3042006  PMID: 21299898
6.  Mitochondrial and Nuclear Genes Suggest that Stony Corals Are Monophyletic but Most Families of Stony Corals Are Not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria) 
PLoS ONE  2008;3(9):e3222.
Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ß-tubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent “robust” and “complex” clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils.
doi:10.1371/journal.pone.0003222
PMCID: PMC2528942  PMID: 18795098
7.  The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans 
Biology Letters  2007;3(4):428-430.
An olfactory receptor (OR) multigene family is responsible for the well-developed sense of smell possessed by terrestrial tetrapods. Mammalian OR genes had diverged greatly in the terrestrial environment after the fish–tetrapod split, indicating their importance to land habitation. In this study, we analysed OR genes of marine tetrapods (minke whale Balaenoptera acutorostrata, dwarf sperm whale Kogia sima, Dall's porpoise Phocoenoides dalli, Steller's sea lion Eumetopias jubatus and loggerhead sea turtle Caretta caretta) and revealed that the pseudogene proportions of OR gene repertoires in whales were significantly higher than those in their terrestrial relative cattle and also in sea lion and sea turtle. On the other hand, the pseudogene proportion of OR sequences in sea lion was not significantly higher compared with that in their terrestrial relative (dog). It indicates that secondary perfectly adapted marine vertebrates (cetaceans) have lost large amount of their OR genes, whereas secondary-semi-adapted marine vertebrates (sea lions and sea turtles) still have maintained their OR genes, reflecting the importance of terrestrial environment for these animals.
doi:10.1098/rsbl.2007.0191
PMCID: PMC2390674  PMID: 17535789
olfactory receptor; secondary-adapted marine vertebrates; Cetacea; sea lion; sea turtle; marine and terrestrial environment

Results 1-7 (7)