Search tips
Search criteria

Results 1-25 (39)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  AAV2 Gene Therapy Readministration in Three Adults with Congenital Blindness 
Science translational medicine  2012;4(120):120ra15.
Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.
PMCID: PMC4169122  PMID: 22323828
2.  Safety and Efficacy of Subretinal Readministration of a Viral Vector in Large Animals to Treat Congenital Blindness 
Science translational medicine  2010;2(21):21ra16.
Leber’s congenital amaurosis (LCA) is a group of severe inherited retinal degenerations that are symptomatic in infancy and lead to total blindness in adulthood. Recent clinical trials using recombinant adeno-associated virus serotype 2 (rAAV2) successfully reversed blindness in patients with LCA caused by RPE65 mutations after one subretinal injection. However, it was unclear whether treatment of the second eye in the same manner would be safe and efficacious, given the potential for a complicating immune response after the first injection. Here, we evaluated the immunological and functional consequences of readministration of rAAV2-hRPE65v2 to the contralateral eye using large animal models. Neither RPE65-mutant (affected; RPE65−/−) nor unaffected animals developed antibodies against the transgene product, but all developed neutralizing antibodies against the AAV2 capsid in sera and intraocular fluid after subretinal injection. Cell-mediated immune responses were benign, with only 1 of 10 animals in the study developing a persistent T cell immune response to AAV2, a response that was mediated by CD4+ T cells. Sequential bilateral injection caused minimal inflammation and improved visual function in affected animals. Thus, subretinal readministration of rAAV2 in animals is safe and effective, even in the setting of preexisting immunity to the vector, a parameter that has been used to exclude patients from gene therapy trials.
PMCID: PMC4169124  PMID: 20374996
3.  Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys 
Science translational medicine  2013;5(194):194ra92.
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.
PMCID: PMC4095828  PMID: 23863832
4.  Three Year Follow-Up after Unilateral Subretinal Delivery of Adeno-Associated Virus in Patients with Leber Congenital Amaurosis Type 2 
Ophthalmology  2013;120(6):1283-1291.
The aim of the current study is to show the clinical data of long-term (3 year) follow-up of five patients affected by Leber Congenital Amaurosis type 2 (LCA2) treated with a single unilateral injection of AAV2-hRPE65v2.
clinical trial
five LCA2 patients with RPE65 gene mutations
After informed consent and confirmation of trial eligibility criteria, the eye with worse visual function was selected for subretinal delivery of Adeno-Associated Virus (AAV2-hRPE65v2). Subjects were evaluated before and after surgery at designated follow-up visits (1, 2, 3, 14, 30, 60, 90, 180, 270, 365 days, 1.5 years and 3 years) by complete ophthalmic examination. Efficacy for each subject was monitored with best corrected visual acuity, kinetic visual field, nystagmus testing and pupillary light reflex.
Main Outcome Measures
best corrected visual acuity, kinetic visual field, nystagmus testing and pupillary light reflex.
The data showed a statistically significant improvement of best corrected visual acuity between baseline and 3 years after treatment in the treated eye (p<0.001). In all patients we observed an enlargement of the areas of visual field, which remained stable till 3 years post injection (average values: baseline 1058 deg2 vs 3 years post treatment: 4630 deg2) and a reduction of the nystagmus frequency compared to baseline at the 3 year time-point. Furthermore, a statistically significant difference was observed in the pupillary constriction of the treated eye (p<0.05) compared to the untreated eye in three patients at 1 and 3-year time-points. No patients suffered serious adverse events related to the vector in the 3 year post-injection period.
The long-term follow-up data (3 years) on the 5-patient Italian cohort involved in the LCA2 gene therapy clinical trial clearly showed a stability of improvement in visual and retinal function that had been achieved a few months after treatment. Longitudinal data analysis showed that the maximum improvement was achieved within six months after treatment, and the visual improvement was stable up to the last observed time-point.
PMCID: PMC3674112  PMID: 23474247
5.  Treatment of Diabetes and Long-Term Survival After Insulin and Glucokinase Gene Therapy 
Diabetes  2013;62(5):1718-1729.
Diabetes is associated with severe secondary complications, largely caused by poor glycemic control. Treatment with exogenous insulin fails to prevent these complications completely, leading to significant morbidity and mortality. We previously demonstrated that it is possible to generate a “glucose sensor” in skeletal muscle through coexpression of glucokinase and insulin, increasing glucose uptake and correcting hyperglycemia in diabetic mice. Here, we demonstrate long-term efficacy of this approach in a large animal model of diabetes. A one-time intramuscular administration of adeno-associated viral vectors of serotype 1 encoding for glucokinase and insulin in diabetic dogs resulted in normalization of fasting glycemia, accelerated disposal of glucose after oral challenge, and no episodes of hypoglycemia during exercise for >4 years after gene transfer. This was associated with recovery of body weight, reduced glycosylated plasma proteins levels, and long-term survival without secondary complications. Conversely, exogenous insulin or gene transfer for insulin or glucokinase alone failed to achieve complete correction of diabetes, indicating that the synergistic action of insulin and glucokinase is needed for full therapeutic effect. This study provides the first proof-of-concept in a large animal model for a gene transfer approach to treat diabetes.
PMCID: PMC3636629  PMID: 23378612
6.  Gene Therapy for Rare Diseases: Summary of a National Institutes of Health Workshop, September 13, 2012 
Human Gene Therapy  2013;24(4):355-362.
Gene therapy has shown clinical efficacy for several rare diseases, using different approaches and vectors. The Gene Therapy for Rare Diseases workshop, sponsored by the National Institutes of Health (NIH) Office of Biotechnology Activities and Office of Rare Diseases Research, brought together investigators from different disciplines to discuss the challenges and opportunities for advancing the field including means for enhancing data sharing for preclinical and clinical studies, development and utilization of available NIH resources, and interactions with the U.S. Food and Drug Administration.
PMCID: PMC3631014  PMID: 23517518
7.  Effects of Immunosuppression on Circulating Adeno-Associated Virus Capsid-Specific T cells in Humans 
Human Gene Therapy  2013;24(4):431-442.
In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4+ T cells, whereas numbers of circulating CD8+ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.
Parzych and colleagues assess the effect of immunosuppression (IS) when used for organ transplantation on immune responses to adeno-associated virus (AAV) capsid antigens. Transplant patients and comorbid control subjects had markedly higher frequencies of circulating AAV capsid–specific T cells compared with healthy adults. IS treatment resulted in a reduction of AAV-specific CD4+ T cells, whereas numbers of circulating CD8+ effector and central memory T cells tended to increase.
PMCID: PMC3631016  PMID: 23461589
Ultrasound in medicine & biology  2011;37(12):2126-2132.
A validated method for assessing hemostasis in vivo is critical for testing the hemostatic efficacy of therapeutic agents designed for patients with bleeding disorders such as von Willebrand disease (VWD) and hemophilia A. We hypothesize that rate of bleeding and time to hemostasis can be monitored in vivo by acoustic radiation force impulse (ARFI) ultrasound. We performed ARFI imaging following 12-gauge needle puncture of hind limb muscle encompassing an ~2mm vein in six normal, eight naïve hemophilia A before and after infusing canine factor VIII, three hemophilia A expressing canine factor VIIa following gene transfer, and two naïve VWD dogs. Serial data sets were processed with custom software to (1) estimate the rate of hemorrhage and (2) estimate the time of hemostasis onset. The rate of hemorrhage during the first 30 min following puncture was markedly increased in the VWD dogs relative to normal but was not significantly different between normal, naïve hemophilia A or hemophilia A expressing cFVIIa. ARFI-derived times to hemostasis were significantly longer in naïve hemophilia A dogs than in normal dogs and were shortened by canine coagulation factors VIII and VIIa. These data support our hypothesis that rate of hemorrhage and time to hemostasis in vivo in response to a standardized hemostatic challenge can be detected by ARFI ultrasound in canine models of VWD and hemophilia. These data also suggest that the ARFI-monitored hemostatic challenge is relevant for in vivo testing of the hemostatic efficacy of therapeutic clotting factor replacement products used to treat inherited bleeding disorders.
PMCID: PMC3928142  PMID: 22033127
Acoustic radiation force impulse (ARFI) ultrasound imaging; Hemophilia; von Willebrand disease; Canine model; Soft-tissue bleeding; Hemostatic challenge; Replacement therapy; Gene therapy
10.  Enhanced T Cell Function in a Mouse Model of Human Glycosylation 
Clinical evidence for a more active immune response in humans compared to our closest hominid relative, the chimpanzee, includes the progression of HIV infection to AIDS, Hepatitis B and C related inflammation, autoimmunity, and unwanted harmful immune responses to viral gene transfer vectors. Humans have a unique mutation of the enzyme cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), causing loss of expression of the sialic acid Neu5Gc. This mutation, occurring 2 million years ago, likely altered the expression and function of ITIM-bearing inhibitory receptors (Siglecs) that bind sialic acids. Previous work showed that human T cells proliferate faster than chimpanzee T cells upon equivalent stimulation. Here we report that Cmah−/− mouse T cells proliferate faster and have greater expression of activation markers than wild-type mouse T cells. Metabolically re-introducing Neu5Gc diminishes the proliferation and activation of both human and murine Cmah−/− T cells. Importantly, Cmah−/− mice mount greater T cell responses to an Adenovirus encoding an Adeno-associated Virus capsid transgene (Ad-AAV). Upon Lymphocytic Choriomeningitis Virus (LCMV) infection, Cmah−/− mice make more LCMV-specific T cells than WT mice, and these T cells are more polyfunctional. Therefore a uniquely human glycosylation mutation, modeled in mice, leads to a more proliferative and active T cell population. These findings in a human-like mouse model have implications for understanding the hyper immune responses that characterize some human diseases.
PMCID: PMC3691298  PMID: 23709682
11.  Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies 
EMBO Molecular Medicine  2013;5(11):1698-1709.
Formation of pathogenic antibodies is a major problem in replacement therapies for inherited protein deficiencies. For example, antibodies to coagulation factors (‘inhibitors’) seriously complicate treatment of haemophilia. While immune tolerance induction (ITI) protocols have been developed, inhibitors against factor IX (FIX) are difficult to eradicate due to anaphylactic reactions and nephrotic syndrome and thus substantially elevate risks for morbidity and mortality. However, hepatic gene transfer with an adeno-associated virus (AAV) serotype 8 vector expressing FIX (at levels of ≥4% of normal) rapidly reversed pre-existing high-titre inhibitors in haemophilia B mice, eliminated antibody production by B cells, desensitized from anaphylaxis (even if protein therapy was resumed) and provided long-term correction. High levels of FIX protein suppressed memory B cells and increased Treg induction, indicating direct and indirect mechanisms of suppression of inhibitor formation. Persistent presence of Treg was required to prevent relapse of antibodies. Together, these data suggest that hepatic gene transfer-based ITI provides a safe and effective alternative to eradicate inhibitors. This strategy may be broadly applicable to reversal of antibodies in different genetic diseases.
PMCID: PMC3840486  PMID: 24106230
adeno-associated virus; factor IX; haemophilia B; inhibitors; liver gene transfer
12.  Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue 
Gene therapy  2012;20(4):417-424.
Antibodies against adeno-associated viral vectors (AAV) are highly prevalent in humans. Both preclinical and clinical studies showed that antibodies against AAV block transduction even at low titers, particularly when the vector is introduced into the bloodstream. Here we measured the neutralizing antibody (NAb) titer against AAV serotype 2, 5, 6, and 8 in serum and matched synovial fluid (SF) from rheumatoid arthritis patients. The titer in SF was lower than in the matched plasma samples, indicating a difference in distribution of NAb to AAV depending on the body fluid compartment. This difference was more evident for AAV2, against which higher titers were measured. Of all serotypes, anti-AAV5 antibodies were the least prevalent in both serum and SF. We next evaluated the impact on anti-AAV antibodies of B cell depletion in rheumatoid arthritis patients who received one or two courses of the anti-CD20 antibody rituximab as part of their disease management. A drop of NAb titer was observed in a subset of those subjects carrying NAb titers ≤1:1000, however only in a minority of subjects titers dropped below 1:5. This work provides insights into strategies to overcome the limitation of pre-existing humoral immunity to AAV vectors.
PMCID: PMC3473155  PMID: 22786533
adeno-associated virus vectors; neutralizing antibodies; synovial tissue
13.  Cellular Localization and Characterization of Cytosolic Binding Partners for Gla Domain-containing Proteins PRRG4 and PRRG2* 
The Journal of Biological Chemistry  2013;288(36):25908-25914.
Background: PRRG proteins were cloned more than a decade ago, but their function is still not known.
Results: Several novel protein-protein interactions for PRRG are identified by array screening and pulldown analysis.
Conclusion: PRRG-initiated signaling events most likely depend on proteins with WW domains.
Significance: The protein-protein interactions identified here may help to elucidate the roles of PRRG proteins in different physiological settings.
The genes encoding a family of proteins termed proline-rich γ-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular γ-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins.
PMCID: PMC3764795  PMID: 23873930
Cell Signaling; Membrane Proteins; Molecular Biology; Mutagenesis Site-specific; Protein Carboxylation; Vitamin K; Cytosolic Binding Partners; Gla Domain; PRRG2; PRRG4
14.  IL12-Mediated Liver Inflammation Reduces the Formation of AAV Transcriptionally Active Forms but Has No Effect over Preexisting AAV Transgene Expression 
PLoS ONE  2013;8(7):e67748.
Recombinant adenoassociated viral vectors (rAAV) have proven to be excellent candidates for gene therapy clinical applications. Recent results showed that cellular immunity to AAV represents a major challenge facing the clinical use of systemic administration of these vectors. Interestingly, no preclinical animal model has previously fully reproduced the clinical findings. The aim of the present work was to enhance the T cell immune response against AAV capsid in mice by the administration of a rAAV expressing the immunostimulatory cytokine IL-12. Our results indicate that although IL-12 expression enhanced the AAV capsid-specific immune response it failed to eliminate transduced hepatocytes and long-term expression was achieved. We found that AAV-mediated transgene expression is altered by IL-12-induced liver inflammation. However, IL-12 expression has no effect over preexisting AAV-mediated transgene expression. IL-12 down-regulates AAV mediated transgene expression via induction of IFN-γ production by NK and T cells, but without altering the transduction efficiency measured by viral genomes. Our results indicate that liver inflammation affects the formation of transcriptionally active AAV vector genomes through an unknown mechanism that can be avoided by the use of DNA-demethylating or anti-inflammatory agents.
PMCID: PMC3699534  PMID: 23844082
16.  Safe, Long-term Hepatic Expression of Anti-HCV shRNA in a Nonhuman Primate Model 
Molecular Therapy  2012;20(9):1737-1749.
The hepatitis C virus (HCV) chronically infects 2% of the world population and effective treatment is limited by long duration and significant side-effects. Here, we describe a novel drug, intended as a “single-shot ” therapy, which expresses three short hairpin RNAs (shRNAs) that simultaneously target multiple conserved regions of the HCV genome as confirmed in vitro by knockdown of an HCV replicon system. Using a recombinant adeno-associated virus (AAV) serotype 8 vector for delivery, comprehensive transduction of hepatocytes was achieved in vivo in a nonhuman primate (NHP) model following a single intravenous injection. However, dose ranging studies performed in 13 NHP resulted in high-expression levels of shRNA from wild-type (wt) Pol III promoters and dose-dependent hepatocellular toxicity, the first demonstration of shRNA-related toxicity in primates, establishing that the hepatotoxicity arises from highly conserved features of the RNA interference (RNAi) pathway. In the second generation drug, each promoter was re-engineered to reduce shRNA transcription to levels that circumvent toxicity but still inhibit replicon activity. In vivo testing of this modified construct in 18 NHPs showed conservation of hepatocyte transduction but complete elimination of hepatotoxicity, even with sustained shRNA expression for 50 days. These data support progression to a clinical study for treatment of HCV infection.
PMCID: PMC3437581  PMID: 22735378
17.  In Vitro and In Vivo Studies of IgG-derived Treg Epitopes (Tregitopes): A Promising New Tool for Tolerance Induction and Treatment of Autoimmunity 
Journal of Clinical Immunology  2012;33(Suppl 1):43-49.
Tregitopes are regulatory T cell epitopes derived from immunoglobulin G (IgG) that stimulate CD25+ FoxP3+ T cells to expand. In conjunction with these Tregs, Tregitopes can prevent, treat, and even cure autoimmune disease in mouse models, suppress allo-specific responses in murine transplant models, inhibit CD8+ T cell responses to recombinant adeno-associated virus (AAV) gene transfer vectors, and induce adaptive Tregs in DO11.10 mice. In this review of recent Tregitope studies, we summarize their effects in vitro and describe recent comparisons between intravenous IgG (IVIG) and Tregitopes in standard in vivo immune tolerance models. Further investigations of the mechanism of action of Tregitopes in the preclinical models described here will lead to clinical trials where Tregitopes may have the potential to alter the treatment of autoimmune disease, transplantation, and allergy, and to improve the efficiency of gene and protein replacement therapies.
PMCID: PMC3538121  PMID: 22941509
Tregitopes; regulatory T cell epitopes; CD25+ FoxP3+ T cells; autoimmune disease; adeno-associated virus; hemophilia
18.  Cardiac Gene Transfer of Short Hairpin RNA Directed Against Phospholamban Effectively Knocks Down Gene Expression but Causes Cellular Toxicity in Canines 
Human Gene Therapy  2011;22(8):969-977.
Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways.
In this preclinical study, Bish and colleagues report that adeno-associated virus serotype 6 (AAV6)-mediated expression of short hairpin RNA (shRNA) directed against phospholamban (PLB), a regulator of heart failure (HF), is effective at knocking down PLB expression. Yet, safety assessments revealed that healthy canines treated with shRNA, but not empty AAV6 capsid, experienced serum cardiac troponin I elevation, cardiac dysfunction, and alteration of cardiac microRNA expression, suggesting that this approach may not be a feasible therapeutic strategy.
PMCID: PMC3159526  PMID: 21542669
19.  Safety of Liver Gene Transfer Following Peripheral Intravascular Delivery of Adeno-Associated Virus (AAV)-5 and AAV-6 in a Large Animal Model 
Human Gene Therapy  2010;22(7):843-852.
Intravascular delivery of adeno-associated virus (AAV) vector is commonly used for liver-directed gene therapy. In humans, the high prevalence of neutralizing antibodies to AAV-2 capsid and the wide cross-reactivity with other serotypes hamper vector transduction efficacy. Moreover, the safety of gene-based approaches depends on vector biodistribution, vector dose, and route of administration. Here we sought to characterize the safety of AAV-5 and AAV-6 for liver-mediated human factor IX (hFIX) expression in rabbits at doses of 1 × 1012 or 1 × 1013 viral genomes/kg. Circulating therapeutic levels of FIX were observed in both cohorts of AAV-6-hFIX, whereas for AAV-5-hFIX only the high dose was effective. Long-lasting inhibitory antibodies to hFIX were detected in three of the 10 AAV-6-injected animals but were absent in the AAV-5 group. Overall, vector shedding in the semen was transient and vector dose-dependent. However, the kinetics of clearance were remarkably faster for AAV-5 (3–5 weeks) compared with AAV-6 (10–13 weeks). AAV-6 vector sequences outside the liver were minimal at 20–30 weeks post-injection. In contrast, AAV-5 exhibited relatively high amounts of vector DNA in tissues other than the liver. Together these data are useful to further define the safety and potential for clinical translation of these AAV vectors.
In this study, Favaro and colleagues characterize the safety of AAV-5 and AAV-6 for liver-mediated human factor IX (hFIX) expression in rabbits at doses of 1 × 1012 and 1 × 1013 viral genomes/kg. Circulating therapeutic levels of FIX were observed in both AAV-6-hFIX cohorts, whereas for the AAV-5-hFIX cohorts only the high dose was effective. The authors also report that the kinetics of vector clearance from the semen were remarkably faster for AAV-5 (3–5 weeks) compared with AAV-6 (10–13 weeks).
PMCID: PMC3135234  PMID: 21126217
20.  Pharmacological Modulation of Humoral Immunity in a Nonhuman Primate Model of AAV Gene Transfer for Hemophilia B 
Molecular Therapy  2012;20(7):1410-1416.
Liver gene transfer for hemophilia B has shown very promising results in recent clinical studies. A potential complication of gene-based treatments for hemophilia and other inherited disorders, however, is the development of neutralizing antibodies (NAb) against the therapeutic transgene. The risk of developing NAb to the coagulation factor IX (F.IX) transgene product following adeno-associated virus (AAV)-mediated hepatic gene transfer for hemophilia is small but not absent, as formation of inhibitory antibodies to F.IX is observed in experimental animals following liver gene transfer. Thus, strategies to modulate antitransgene NAb responses are needed. Here, we used the anti-B cell monoclonal antibody rituximab (rtx) in combination with cyclosporine A (CsA) to eradicate anti-human F.IX NAb in rhesus macaques previously injected intravenously with AAV8 vectors expressing human F.IX. A short course of immunosuppression (IS) resulted in eradication of anti-F.IX NAb with restoration of plasma F.IX transgene product detection. In one animal, following IS anti-AAV6 antibodies also dropped below detection, allowing for successful AAV vector readministration and resulting in high levels (60% or normal) of F.IX transgene product in plasma. Though the number of animals is small, this study supports for the safety and efficacy of B cell-targeting therapies to eradicate NAb developed following AAV-mediated gene transfer.
PMCID: PMC3392987  PMID: 22565846
21.  Adenovirus-Associated Virus Vector–Mediated Gene Transfer in Hemophilia B 
The New England Journal of Medicine  2011;365(25):2357-2365.
Hemophilia B, an X-linked disorder, is ideally suited for gene therapy. We investigated the use of a new gene therapy in patients with the disorder.
We infused a single dose of a serotype-8–pseudotyped, self-complementary adenovirus-associated virus (AAV) vector expressing a codon-optimized human factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco) in a peripheral vein in six patients with severe hemophilia B (FIX activity, <1% of normal values). Study participants were enrolled sequentially in one of three cohorts (given a high, intermediate, or low dose of vector), with two participants in each group. Vector was administered without immunosuppressive therapy, and participants were followed for 6 to 16 months.
AAV-mediated expression of FIX at 2 to 11% of normal levels was observed in all participants. Four of the six discontinued FIX prophylaxis and remained free of spontaneous hemorrhage; in the other two, the interval between prophylactic injections was increased. Of the two participants who received the high dose of vector, one had a transient, asymptomatic elevation of serum aminotransferase levels, which was associated with the detection of AAV8-capsid–specific T cells in the peripheral blood; the other had a slight increase in liver-enzyme levels, the cause of which was less clear. Each of these two participants received a short course of glucocorticoid therapy, which rapidly normalized aminotransferase levels and maintained FIX levels in the range of 3 to 11% of normal values.
Peripheral-vein infusion of scAAV2/8-LP1-hFIXco resulted in FIX transgene expression at levels sufficient to improve the bleeding phenotype, with few side effects. Although immune-mediated clearance of AAV-transduced hepatocytes remains a concern, this process may be controlled with a short course of glucocorticoids without loss of transgene expression. (Funded by the Medical Research Council and others; number, NCT00979238.)
PMCID: PMC3265081  PMID: 22149959
24.  Protein Replacement Therapy and Gene Transfer in Canine Models of Hemophilia A, Hemophilia B, von Willebrand Disease, and Factor VII Deficiency 
Dogs with hemophilia A, hemophilia B, von Willebrand disease (VWD), and factor VII deficiency faithfully recapitulate the severe bleeding phenotype that occurs in humans with these disorders. The first rational approach to diagnosing these bleeding disorders became possible with the development of reliable assays in the 1940s through research that used these dogs. For the next 60 years, treatment consisted of replacement of the associated missing or dysfunctional protein, first with plasma-derived products and subsequently with recombinant products. Research has consistently shown that replacement products that are safe and efficacious in these dogs prove to be safe and efficacious in humans. But these highly effective products require repeated administration and are limited in supply and expensive; in addition, plasma-derived products have transmitted bloodborne pathogens. Recombinant proteins have all but eliminated inadvertent transmission of bloodborne pathogens, but the other limitations persist. Thus, gene therapy is an attractive alternative strategy in these monogenic disorders and has been actively pursued since the early 1990s. To date, several modalities of gene transfer in canine hemophilia have proven to be safe, produced easily detectable levels of transgene products in plasma that have persisted for years in association with reduced bleeding, and correctly predicted the vector dose required in a human hemophilia B liver-based trial. Very recently, however, researchers have identified an immune response to adeno-associated viral gene transfer vector capsid proteins in a human liver-based trial that was not present in preclinical testing in rodents, dogs, or nonhuman primates. This article provides a review of the strengths and limitations of canine hemophilia, VWD, and factor VII deficiency models and of their historical and current role in the development of improved therapy for humans with these inherited bleeding disorders.
PMCID: PMC3101868  PMID: 19293459
coagulation assays; dog model; hemophilia; factor VII; factor VIII; factor IX; von Willebrand disease; von Willebrand factor
25.  Safety of AAV Factor IX Peripheral Transvenular Gene Delivery to Muscle in Hemophilia B Dogs 
Molecular Therapy  2010;18(7):1318-1329.
Muscle represents an attractive target tissue for adeno-associated virus (AAV) vector–mediated gene transfer for hemophilia B (HB). Experience with direct intramuscular (i.m.) administration of AAV vectors in humans showed that the approach is safe but fails to achieve therapeutic efficacy. Here, we present a careful evaluation of the safety profile (vector, transgene, and administration procedure) of peripheral transvenular administration of AAV-canine factor IX (cFIX) vectors to the muscle of HB dogs. Vector administration resulted in sustained therapeutic levels of cFIX expression. Although all animals developed a robust antibody response to the AAV capsid, no T-cell responses to the capsid antigen were detected by interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot). Interleukin (IL)-10 ELISpot screening of lymphocytes showed reactivity to cFIX-derived peptides, and restimulation of T cells in vitro in the presence of the identified cFIX epitopes resulted in the expansion of CD4+FoxP3+IL-10+ T-cells. Vector administration was not associated with systemic inflammation, and vector spread to nontarget tissues was minimal. At the local level, limited levels of cell infiltrates were detected when the vector was administered intravascularly. In summary, this study in a large animal model of HB demonstrates that therapeutic levels of gene transfer can be safely achieved using a novel route of intravascular gene transfer to muscle.
PMCID: PMC2911254  PMID: 20424599

Results 1-25 (39)