PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Coordination of peroxide to the CuM center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study 
Many bioactive peptides, such as hormones and neuropeptides, require amidation at the C terminus for their full biological activity. Peptidylglycine α-hydroxylating monooxygenase (PHM) performs the first step of the amidation reaction—the hydroxylation of peptidylglycine substrates at the Cα position of the terminal glycine. The hydroxylation reaction is copper- and O2-dependent and requires 2 equiv of exogenous reductant. The proposed mechanism suggests that O2 is reduced by two electrons, each provided by one of two nonequivalent copper sites in PHM (CuH and CuM). The characteristics of the reduced oxygen species in the PHM reaction and the identity of the reactive intermediate remain uncertain. To further investigate the nature of the key intermediates in the PHM cycle, we determined the structure of the oxidized form of PHM complexed with hydrogen peroxide. In this 1.98-Å-resolution structure (hydro)peroxide binds solely to CuM in a slightly asymmetric side-on mode. The O–O interatomic distance of the copper-bound ligand is 1.5 Å, characteristic of peroxide/hydroperoxide species, and the Cu–O distances are 2.0 and 2.1 Å. Density functional theory calculations using the first coordination sphere of the CuM active site as a model system show that the computed energies of the side-on L3CuM(II)–O22− species and its isomeric, end-on structure L3CuM(I)–O2·− are similar, suggesting that both these intermediates are significantly populated within the protein environment. This observation has important mechanistic implications. The geometry of the observed side-on coordinated peroxide ligand in L3CuM(II)O22− is in good agreement with the results of a hybrid quantum mechanical–molecular mechanical optimization of this species.
doi:10.1007/s00775-012-0967-z
PMCID: PMC4041156  PMID: 23247335
Peptidylglycine α-hydroxylating monooxygenase; Peroxide; Amidation of peptides; Copper-containing proteins
2.  The Complete Reaction Mechanism of Indoleamine 2,3-Dioxygenase as Revealed by QM/MM Simulations 
The Journal of Physical Chemistry. B  2012;116(4):1401-1413.
Indoleamine 2,3 dioxygenase (IDO) and tryptophan dioxygenase (TDO) are two heme-proteins that catalyze the oxidation reaction of tryptophan (Trp) to N-formylkynurenine (NFK). Human IDO (hIDO) has recently been recognized as a potent anti-cancer drug target, a fact that triggered intense research on the reaction and inhibition mechanisms of hIDO. Our recent studies revealed that the dioxygenase reaction catalyzed by hIDO and TDO is initiated by addition of the ferric iron-bound superoxide to the C2=C3 bond of Trp to form a ferryl and Trp-epoxide intermediate, via a 2-indolenylperoxo radical transition state. The data demonstrate that the two atoms of dioxygen are inserted into the substrate in a stepwise fashion, challenging the paradigm of heme-based dioxygenase chemistry. In the current study, we used QM/MM methods to decipher the mechanism by which the second ferryl oxygen is inserted into the Trp-epoxide to form the NFK product in hIDO. Our results show that the most energetically favored pathway involves proton transfer from Trp-NH3+ to the epoxide oxygen, triggering epoxide ring-opening and a concerted nucleophilic attack of the ferryl oxygen to the C2 of Trp that leads to a meta-stable reaction intermediate. This intermediate subsequently converts to NFK, following C2-C3 bond cleavage and the associated back proton transfer from the oxygen to the amino group of Trp. A comparative study with Xantomonas campestris TDO (xcTDO) indicates that the reaction follows a similar pathway, although subtle differences distinguishing the two enzyme reactions are evident. The results underscore the importance of the NH3+ group of Trp in the two-step ferryl-based mechanism of hIDO and xcTDO, by acting as an acid catalyst to facilitate the epoxide ring-opening reaction and ferryl oxygen addition to the indole ring.
doi:10.1021/jp2082825
PMCID: PMC3304497  PMID: 22196056
Heme; Enzyme; Dioxygenase; hIDO; TDO; xcTDO; Tryptophan; N-formylkynurenine; NFK; Computer Simulation; ab-initio; Quantum Mechanics/Molecular Mechanics (QM/MM); DFT; Epoxide; Ferryl
3.  Molecular basis for the substrate stereoselectivity in Tryptophan Dioxygenase 
Biochemistry  2011;50(50):10910-10918.
Tryptophan dioxygenase (TDO) and Indoleamine 2,3 dioxygenase (IDO) are the only two heme-proteins that catalyze the oxidation reaction of tryptophan (Trp) to N-formylkynurenine (NFK). While human IDO (hIDO) is able to oxidize both L and D-Trp, human TDO (hTDO) displays a major specificity towards L-Trp. In this work we aim to interrogate the molecular basis for the substrate stereoselectivity of hTDO. Our previous molecular dynamics simulation studies of Xanthomonas campestris TDO (xcTDO) showed that an H-bond between T254 (T342 in hTDO) and the ammonium group of the substrate is present in the L-Trp-bound enzyme, but not in the D-Trp bound enzyme. The fact that this is the only notable structural alteration induced by the change in the stereo structure of the substrate prompted us to produce and characterize the T342A mutant of hTDO to evaluate the structural role of T342 in controlling the substrate stereoselectivity of the enzyme. The experimental results indicate that the mutation only slightly perturbs the global structural properties of the enzyme, but it totally abolishes the substrate stereoselectivity. Molecular Dynamics simulations of xcTDO show that T254 controls the substrate stereoselectivity of the enzyme by (i) modulating the H-bonding interaction between the NH3+ group and epoxide oxygen of the ferryl/indole 2,3-epoxide intermediate of the enzyme, and (ii) regulating the dynamics of two active site loops, loop250–260 and loop117–130, critical for substrate-binding.
doi:10.1021/bi201439m
PMCID: PMC3237892  PMID: 22082147
4.  Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium tuberculosis Truncated Hemoglobin N 
PLoS ONE  2012;7(11):e49291.
The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O2 and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O2/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN.
doi:10.1371/journal.pone.0049291
PMCID: PMC3493545  PMID: 23145144
5.  pH-Dependent Conformational Changes in Proteins and Their Effect on Experimental pKas: The Case of Nitrophorin 4 
PLoS Computational Biology  2012;8(11):e1002761.
The acid-base behavior of amino acids is an important subject of study due to their prominent role in enzyme catalysis, substrate binding and protein structure. Due to interactions with the protein environment, their pKas can be shifted from their solution values and, if a protein has two stable conformations, it is possible for a residue to have different “microscopic”, conformation-dependent pKa values. In those cases, interpretation of experimental measurements of the pKa is complicated by the coupling between pH, protonation state and protein conformation. We explored these issues using Nitrophorin 4 (NP4), a protein that releases NO in a pH sensitive manner. At pH 5.5 NP4 is in a closed conformation where NO is tightly bound, while at pH 7.5 Asp30 becomes deprotonated, causing the conformation to change to an open state from which NO can easily escape. Using constant pH molecular dynamics we found two distinct microscopic Asp30 pKas: 8.5 in the closed structure and 4.3 in the open structure. Using a four-state model, we then related the obtained microscopic values to the experimentally observed “apparent” pKa, obtaining a value of 6.5, in excellent agreement with experimental data. This value must be interpreted as the pH at which the closed to open population transition takes place. More generally, our results show that it is possible to relate microscopic structure dependent pKa values to experimentally observed ensemble dependent apparent pKas and that the insight gained in the relatively simple case of NP4 can be useful in several more complex cases involving a pH dependent transition, of great biochemical interest.
Author Summary
The interaction of an amino acid with its protein environment can result in an acid-base behavior that is very different from what would be observed in solution. This environment can be greatly altered when the protein changes conformation. As a result, the amino acid will have two different “microscopic” pKa values. Nitrophorin 4 is a good case study to explore this behavior, because it undergoes a pH-dependent conformational change that is well characterized experimentally. Using computer simulation tools, we found that the key titratable Aspartic acid 30, has two very different microscopic pKas: 4.3 and 8.5, which are significantly different to the observed transition pKa in solution. However, using a simple model, we were able to understand how this causes the conformational change to take place at pH∼6.5, as measured experimentally. The insight gained in this relatively simple case can be useful in other more complex cases where the apparent pKa is also a result of the interplay of different conformations where some amino acids experience very different environments.
doi:10.1371/journal.pcbi.1002761
PMCID: PMC3486867  PMID: 23133364
6.  When Galectins Recognize Glycans: From Biochemistry to Physiology and Back Again 
Biochemistry  2011;50(37):7842-7857.
In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings.
doi:10.1021/bi201121m
PMCID: PMC3429939  PMID: 21848324
7.  Following Ligand Migration Pathways from Picoseconds to Milliseconds in Type II Truncated Hemoglobin from Thermobifida fusca 
PLoS ONE  2012;7(7):e39884.
CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ∼100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ∼2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ∼100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ∼3 to ∼100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb.
doi:10.1371/journal.pone.0039884
PMCID: PMC3391200  PMID: 22792194
8.  pH Dependent Mechanism of Nitric Oxide Release in Nitrophorins 2 and 4 
The journal of physical chemistry. B  2009;113(4):1192-1201.
Nitrophorins are NO carrier proteins that transport and release NO through a pH dependent conformational change. They bind NO tightly in a low pH environment and release it in a higher pH environment. Experimental evidence shows that the increase in the NO dissociation equilibrium constant, Kd, is due mainly to an increase in the NO release rate. Structural and kinetic data strongly suggest that NPs control NO escape by modulating its migration from the active site to the solvent through a pH dependent conformational change. NP2 and NP4 are two representative proteins of the family displaying a 39% overall sequence identity and, interestingly, NP2 releases NO slower than NP4. The proposal that NPs' NO release relies mainly on the NO escape rate make NPs a very peculiar case among typical heme proteins. The connection between the pH dependent conformational change and ligand release mechanism is not fully understood and the structural basis for the pH induced structural transition and the different NO release patterns in NPs are unresolved, yet interesting issues. In this work we have used state of the art molecular dynamics simulations to study the NO escape process in NP2 and NP4 in both the low and high pH states. Our results show that both NPs modulate NO release by switching between a “closed” conformation in a low pH environment and an “open” conformation at higher pH. In both proteins the change is caused by the differential protonation of a common residue Asp30 in NP4 and Asp29 in NP2, and the NO escape route is conserved. Finally, our results show that in NP2, the conformational change to the “open” conformation is smaller than that for NP4 which results in a higher barrier for NO release.
doi:10.1021/jp806906x
PMCID: PMC2654266  PMID: 19159340
Nitrophorin; Nitric Oxide; Heme Protein; Molecular dynamics; Jarzynski; Chagas disease

Results 1-8 (8)