PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Isoniazid Inhibits the Heme-Based Reactivity of Mycobacterium tuberculosis Truncated Hemoglobin N 
PLoS ONE  2013;8(8):e69762.
Isoniazid represents a first-line anti-tuberculosis medication in prevention and treatment. This prodrug is activated by a mycobacterial catalase-peroxidase enzyme called KatG in Mycobacterium tuberculosis), thereby inhibiting the synthesis of mycolic acid, required for the mycobacterial cell wall. Moreover, isoniazid activation by KatG produces some radical species (e.g., nitrogen monoxide), that display anti-mycobacterial activity. Remarkably, the ability of mycobacteria to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in these bacteria of (pseudo-)enzymatic detoxification systems, including truncated hemoglobins (trHbs). Here, we report that isoniazid binds reversibly to ferric and ferrous M. tuberculosis trHb type N (or group I; Mt-trHbN(III) and Mt-trHbN(II), respectively) with a simple bimolecular process, which perturbs the heme-based spectroscopic properties. Values of thermodynamic and kinetic parameters for isoniazid binding to Mt-trHbN(III) and Mt-trHbN(II) are K = (1.1±0.1)×10−4 M, kon = (5.3±0.6)×103 M−1 s−1 and koff = (4.6±0.5)×10−1 s−1; and D = (1.2±0.2)×10−3 M, don = (1.3±0.4)×103 M−1 s−1, and doff = 1.5±0.4 s−1, respectively, at pH 7.0 and 20.0°C. Accordingly, isoniazid inhibits competitively azide binding to Mt-trHbN(III) and Mt-trHbN(III)-catalyzed peroxynitrite isomerization. Moreover, isoniazid inhibits Mt-trHbN(II) oxygenation and carbonylation. Although the structure of the Mt-trHbN-isoniazid complex is not available, here we show by docking simulation that isoniazid binding to the heme-Fe atom indeed may take place. These data suggest a direct role of isoniazid to impair fundamental functions of mycobacteria, e.g. scavenging of reactive nitrogen and oxygen species, and metabolism.
doi:10.1371/journal.pone.0069762
PMCID: PMC3731299  PMID: 23936350
2.  Structure and Haem-Distal Site Plasticity in Methanosarcina acetivorans Protoglobin 
PLoS ONE  2013;8(6):e66144.
Protoglobin from Methanosarcina acetivorans C2A (MaPgb), a strictly anaerobic methanogenic Archaea, is a dimeric haem-protein whose biological role is still unknown. As other globins, protoglobin can bind O2, CO and NO reversibly in vitro, but it displays specific functional and structural properties within members of the hemoglobin superfamily. CO binding to and dissociation from the haem occurs through biphasic kinetics, which arise from binding to (and dissociation from) two distinct tertiary states in a ligation-dependent equilibrium. From the structural viewpoint, protoglobin-specific loops and a N-terminal extension of 20 residues completely bury the haem within the protein matrix. Thus, access of small ligand molecules to the haem is granted by two apolar tunnels, not common to other globins, which reach the haem distal site from locations at the B/G and B/E helix interfaces. Here, the roles played by residues Trp(60)B9, Tyr(61)B10 and Phe(93)E11 in ligand recognition and stabilization are analyzed, through crystallographic investigations on the ferric protein and on selected mutants. Specifically, protein structures are reported for protoglobin complexes with cyanide, with azide (also in the presence of Xenon), and with more bulky ligands, such as imidazole and nicotinamide. Values of the rate constant for cyanide dissociation from ferric MaPgb-cyanide complexes have been correlated to hydrogen bonds provided by Trp(60)B9 and Tyr(61)B10 that stabilize the haem-Fe(III)-bound cyanide. We show that protoglobin can strikingly reshape, in a ligand-dependent way, the haem distal site, where Phe(93)E11 acts as ligand sensor and controls accessibility to the haem through the tunnel system by modifying the conformation of Trp(60)B9.
doi:10.1371/journal.pone.0066144
PMCID: PMC3680402  PMID: 23776624
3.  Reciprocal Allosteric Modulation of Carbon Monoxide and Warfarin Binding to Ferrous Human Serum Heme-Albumin 
PLoS ONE  2013;8(3):e58842.
Human serum albumin (HSA), the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s). As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i) of carbon monoxide (CO) binding to ferrous human serum heme-albumin (HSA-heme-Fe(II)) by warfarin (WF), and (ii) of WF binding to HSA-heme-Fe(II) by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II), respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands). This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II). The HSA-heme-Fe(II) populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i) upon CO binding a conformational change of HSA-heme-Fe(II) takes place (likely reflecting the displacement of an endogenous ligand by CO), and (ii) CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II) population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II).
doi:10.1371/journal.pone.0058842
PMCID: PMC3605432  PMID: 23555601
4.  Neuroprotective Effects of 17β-Estradiol Rely on Estrogen Receptor Membrane Initiated Signals 
Besides its crucial role in many physiological events, 17β-estradiol (E2) exerts protective effects in the central nervous system. The E2 effects are not restricted to the brain areas related with the control of reproductive function, but rather are widespread throughout the developing and the adult brain. E2 actions are mediated through estrogen receptors (i.e., ERα and ERβ) belonging to the nuclear receptor super-family. As members of the ligand-regulated transcription factor family, classically, the actions of ERs in the brain were thought to mediate only the E2 long-term transcriptional effects. However, a growing body of evidence highlighted rapid, membrane initiated E2 effects in the brain that are independent of ER transcriptional activities and are involved in E2-induced neuroprotection. The aim of this review is to focus on the rapid effects of E2 in the brain highlighting the specific role of the signaling pathway(s) of the ERβ subtype in the neuroprotective actions of E2.
doi:10.3389/fphys.2012.00073
PMCID: PMC3319910  PMID: 22493583
estrogen receptor α; estrogen receptor β; 17β-estradiol; neuroprotective effects; membrane initiated signals
5.  Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin 
PLoS ONE  2012;7(3):e33614.
Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe the observed carbonylation kinetics.
doi:10.1371/journal.pone.0033614
PMCID: PMC3313925  PMID: 22479420
6.  Estrogen Signaling Multiple Pathways to Impact Gene Transcription 
Current Genomics  2006;7(8):497-508.
Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17β-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-κB (NF-κB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge.
PMCID: PMC2269003  PMID: 18369406
Estrogen; estrogen receptors; genomic and non-genomic action mechanism; gene transcription
7.  Involvement of Pseudomonas aeruginosa Rhodanese in Protection from Cyanide Toxicity▿  
Cyanide is a serious environmental pollutant and a biocontrol metabolite in plant growth-promoting Pseudomonas species. Here we report on the presence of multiple sulfurtransferases in the cyanogenic bacterium Pseudomonas aeruginosa PAO1 and investigate in detail RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) which converts cyanide to less toxic thiocyanate. RhdA is a cytoplasmic enzyme acting as the principal rhodanese in P. aeruginosa. The rhdA gene forms a transcriptional unit with the PA4955 and psd genes and is controlled by two promoters located upstream of PA4955 and rhdA. Both promoters direct constitutive RhdA expression and show similar patterns of activity, involving moderate down-regulation at the stationary phase or in the presence of exogenous cyanide. We previously observed that RhdA overproduction protects Escherichia coli against cyanide toxicity, and here we show that physiological RhdA levels contribute to P. aeruginosa survival under cyanogenic conditions. The growth of a ΔrhdA mutant is impaired under cyanogenic conditions and fully restored upon complementation with rhdA. Wild-type P. aeruginosa outcompetes the ΔrhdA mutant in cyanogenic coculture assays. Hence, RhdA could be regarded as an effector of P. aeruginosa intrinsic resistance to cyanide, insofar as it provides the bacterium with a defense mechanism against endogenous cyanide toxicity, in addition to cyanide-resistant respiration.
doi:10.1128/AEM.02143-06
PMCID: PMC1796984  PMID: 17098912
8.  Palmitoylation-dependent Estrogen Receptor α Membrane Localization: Regulation by 17β-Estradiol 
Molecular Biology of the Cell  2005;16(1):231-237.
A fraction of the nuclear estrogen receptor α (ERα) is localized to the plasma membrane region of 17β-estradiol (E2) target cells. We previously reported that ERα is a palmitoylated protein. To gain insight into the molecular mechanism of ERα residence at the plasma membrane, we tested both the role of palmitoylation and the impact of E2 stimulation on ERα membrane localization. The cancer cell lines expressing transfected or endogenous human ERα (HeLa and HepG2, respectively) or the ERα nonpalmitoylable Cys447Ala mutant transfected in HeLa cells were used as experimental models. We found that palmitoylation of ERα enacts ERα association with the plasma membrane, interaction with the membrane protein caveolin-1, and nongenomic activities, including activation of signaling pathways and cell proliferation (i.e., ERK and AKT activation, cyclin D1 promoter activity, DNA synthesis). Moreover, E2 reduces both ERα palmitoylation and its interaction with caveolin-1, in a time- and dose-dependent manner. These data point to the physiological role of ERα palmitoylation in the receptor localization to the cell membrane and in the regulation of the E2-induced cell proliferation.
doi:10.1091/mbc.E04-07-0547
PMCID: PMC539167  PMID: 15496458

Results 1-8 (8)