PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("weber, Alan B")
1.  Low-Sodium DASH Diet Improves Diastolic Function and Ventricular-Arterial Coupling in Hypertensive Heart Failure with Preserved Ejection Fraction 
Circulation. Heart failure  2013;6(6):1165-1171.
Background
Heart failure with preserved ejection fraction (HFPEF) involves failure of cardiovascular reserve in multiple domains. In HFPEF animal models, dietary sodium restriction improves ventricular and vascular stiffness and function. We hypothesized that the sodium-restricted Dietary Approaches to Stop Hypertension diet (DASH/SRD) would improve left ventricular diastolic function, arterial elastance, and ventricular-arterial (V-A) coupling in hypertensive HFPEF.
Methods and Results
Thirteen patients with treated hypertension and compensated HFPEF consumed the DASH/SRD (target sodium 50 mmol/2100 kcal) for 21 days. We measured baseline and post-DASH/SRD brachial and central BP (via radial arterial tonometry), and cardiovascular function with echocardiographic measures (all previously invasively validated). Diastolic function was quantified via the Parametrized Diastolic Filling formalism, which yields relaxation/viscoelastic (c) and passive/stiffness (k) constants through analysis of Doppler mitral inflow velocity (E-wave) contours. Effective arterial elastance (Ea) end-systolic elastance (Ees), and V-A coupling (defined as the ratio Ees:Ea) were determined using previously published techniques. Wilcoxon matched-pairs tests were used for pre-post comparisons.
The DASH/SRD reduced clinic and 24-hour brachial systolic pressure (155±35 to 138±30 and 130±16 to 123±18 mmHg, both p=.02) and central end-systolic pressure trended lower (116±18 to 111±16 mmHg, p=.12). In conjunction, diastolic function improved (c, 24.3±5.3 to 22.7±8.1 s−1;p=.03; k, 252±115 to 170±37 s−1;p=.03), Ea decreased (2.0±0.4 to 1.7±0.4 mmHg/ml;p=.007), and V-A coupling improved (Ees:Ea, 1.5±0.3 to 1.7±0.4;p=.04).
Conclusions
In hypertensive HFPEF patients, the sodium-restricted DASH diet was associated with favorable changes in ventricular diastolic function, arterial elastance, and V-A coupling.
doi:10.1161/CIRCHEARTFAILURE.113.000481
PMCID: PMC4017662  PMID: 23985432
diastolic heart failure; salt sensitivity hypertension; diet; ventricular/vascular coupling hemodynamics; preserved left ventricular function
2.  GENOME-WIDE CASE/CONTROL STUDIES IN HYPERTENSION: ONLY THE “TIP OF THE ICEBERG” 
Journal of hypertension  2010;28(6):1115-1123.
Recent advances in genome technology have enabled genome-wide searching for disease predisposition loci, using dense SNP and haplotype maps. Over the past year, such approaches have yielded positive results in human hypertension. Here we outline factors underlying the rationale for the approach, and consider reasons for false positive and negative results. While the approach has positive results, typically the trait-associated loci explain only a small fraction of the heritable fraction of trait variance. Finally, we consider alternative approaches and emerging strategies to probe the role of heredity in control of blood pressure.
doi:10.1097/HJH.0b013e328337f6bc
PMCID: PMC2873167  PMID: 20216088
Hypertension; genomics; association
3.  Low-Sodium DASH Diet Reduces Blood Pressure, Arterial Stiffness, and Oxidative Stress in Hypertensive HFPEF 
Hypertension  2012;60(5):1200-1206.
Recent studies suggest that oxidative stress and vascular dysfunction contribute to heart failure with preserved ejection fraction (HFPEF). In ‘salt-sensitive’ HFPEF animal models, diets low in sodium and high in potassium, calcium, magnesium, and antioxidants attenuate oxidative stress and cardiovascular damage. We hypothesized that the sodium-restricted Dietary Approaches to Stop Hypertension diet (DASH/SRD) would have similar effects in human hypertensive HFPEF. Thirteen patients with treated hypertension and compensated HFPEF consumed the DASH/SRD for 21 days (all food/most beverages provided). The DASH/SRD reduced clinic systolic (155 to 138 mmHg, p=.02) and diastolic BP (79 to 72 mmHg, p=.04), 24-hour ambulatory systolic (130 to 123 mmHg, p=.02) and diastolic BP (67 to 62 mmHg, p=.02), and carotid-femoral pulse wave velocity (12.4 to 11.0 m/s, p=.03). Urinary F2-isoprostanes decreased by 31% (209 to 144 pmol/mmol Cr, p=.02) despite increased urinary aldosterone excretion. The reduction in urinary F2-isoprostanes closely correlated with the reduction in urinary sodium excretion on the DASH/SRD. In this cohort of HFPEF patients with treated hypertension, the DASH/SRD reduced systemic blood pressure, arterial stiffness, and oxidative stress. These findings are characteristic of ‘salt-sensitive’ hypertension, a phenotype present in many HFPEF animal models, and suggest shared pathophysiological mechanisms linking these two conditions. Further dietary modification studies could provide insights into the development and progression of hypertensive HFPEF.
doi:10.1161/HYPERTENSIONAHA.112.202705
PMCID: PMC3522520  PMID: 23033371
diastolic heart failure; hypertension; dietary sodium; ambulatory blood pressure monitoring; vascular stiffness
4.  A Polymorphic 3’UTR Element in ATP1B1 Regulates Alternative Polyadenylation and Is Associated with Blood Pressure 
PLoS ONE  2013;8(10):e76290.
Although variants in many genes have previously been shown to be associated with blood pressure (BP) levels, the molecular mechanism underlying these associations are mostly unknown. We identified a multi-allelic T-rich sequence (TRS) in the 3’UTR of ATP1B1 that varies in length and sequence composition (T22-27 and T12GT 3GT6). The 3’UTR of ATP1B1 contains 2 functional polyadenylation signals and the TRS is downstream of the proximal polyadenylation site (A2). Therefore, we hypothesized that alleles of this TRS might influence ATP1B1 expression by regulating alternative polyadenylation. In vitro, the T12GT 3GT6 allele increases polyadenylation at the A2 polyadenylation site as compared to the T23 allele. Consistent with our hypothesis, the relative abundance of the A2-polyadenylated ATP1B1 mRNA was higher in human kidneys with at least one copy of the T12GT 3GT6 allele than in those lacking this allele. The T12GT 3GT6 allele is also associated with higher systolic BP (beta = 3.3 mmHg, p = 0.014) and diastolic BP (beta = 2.4 mmHg, p = 0.003) in a European-American population. Therefore, we have identified a novel multi-allelic TRS in the 3’UTR of ATP1B1 that is associated with higher BP and may mediate its effect by regulating the polyadenylation of the ATP1B1 mRNA.
doi:10.1371/journal.pone.0076290
PMCID: PMC3788127  PMID: 24098465
5.  Whites excrete a water load more rapidly than blacks 
Hypertension  2009;53(4):715-718.
A recent report demonstrated a racial difference in response to furosemide compatible with increased ion reabsorption in the thick ascending limb of the loop of Henle in blacks. Urinary dilution is another function of the loop-diuretic-sensitive Na,K,2Cl cotransporter in the thick ascending limb, and racial differences in urinary diluting capacity have not been reported previously. We assessed diluting segment (cortical thick ascending limb and distal convoluted tubule) function in black and white normotensives in 2 studies utilizing a water loading approach. In both studies, we found that whites excreted a water load more rapidly than blacks. In the first study, the final free water clearance rates (mean±SD) were 7.3±4.7 ml/min in whites (n=17, 7 females, 10 males) and 3.8±3.6 ml/min in blacks (n=14, 9 females, 5 males),
doi:10.1161/HYPERTENSIONAHA.108.121665
PMCID: PMC2671724  PMID: 19188526
kidney; water; race; renal tubule; ion; vasopressin
Acta diabetologica  2009;47(Suppl 1):199-207.
Identification and characterization of the genetic variants underlying type 2 diabetes susceptibility can provide important understanding of the etiology and pathogenesis of type 2 diabetes. We previously identified strong evidence of linkage for type 2 diabetes on chromosome 22 among 3,383 Hypertension Genetic Epidemiology Network (HyperGEN) participants from 1,124 families. The checkpoint 2 (CHEK2) gene, an important mediator of cellular responses to DNA damage, is located 0.22 Mb from this linkage peak. In this study, we tested the hypothesis that the CHEK2 gene contains one or more polymorphic variants that are associated with type 2 diabetes in HyperGEN individuals. In addition, we replicated our findings in two other Family Blood Pressure Program (FBPP) populations and in the population-based Atherosclerosis Risk in Communities (ARIC) study. We genotyped 1,584 African-American and 1,531 white HyperGEN participants, 1,843 African-American and 1,569 white GENOA participants, 871 African-American and 1,009 white GenNet participants, and 4,266 African-American and 11,478 white ARIC participants for four single nucleotide polymorphisms (SNPs) in CHEK2. Using additive models, we evaluated the association of CHEK2 SNPs with type 2 diabetes in participants within each study population stratified by race, and in a meta-analysis, adjusting for age, age2, sex, sex-by-age interaction, study center, and relatedness. One CHEK2 variant, rs4035540, was associated with an increased risk of type 2 diabetes in HyperGEN participants, two replication samples, and in the meta-analysis. These results may suggest a new pathway in the pathogenesis of type 2 diabetes that involves pancreatic beta-cell damage and apoptosis.
doi:10.1007/s00592-009-0162-z
PMCID: PMC2965317  PMID: 19855918
CHEK2 gene; CHEK2 SNPs; Type 2 diabetes; Family Blood Pressure Program; Atherosclerosis Risk in Communities Study
Fox, Ervin R. | Young, J. Hunter | Li, Yali | Dreisbach, Albert W. | Keating, Brendan J. | Musani, Solomon K. | Liu, Kiang | Morrison, Alanna C. | Ganesh, Santhi | Kutlar, Abdullah | Ramachandran, Vasan S. | Polak, Josef F. | Fabsitz, Richard R. | Dries, Daniel L. | Farlow, Deborah N. | Redline, Susan | Adeyemo, Adebowale | Hirschorn, Joel N. | Sun, Yan V. | Wyatt, Sharon B. | Penman, Alan D. | Palmas, Walter | Rotter, Jerome I. | Townsend, Raymond R. | Doumatey, Ayo P. | Tayo, Bamidele O. | Mosley, Thomas H. | Lyon, Helen N. | Kang, Sun J. | Rotimi, Charles N. | Cooper, Richard S. | Franceschini, Nora | Curb, J. David | Martin, Lisa W. | Eaton, Charles B. | Kardia, Sharon L.R. | Taylor, Herman A. | Caulfield, Mark J. | Ehret, Georg B. | Johnson, Toby | Chakravarti, Aravinda | Zhu, Xiaofeng | Levy, Daniel | Munroe, Patricia B. | Rice, Kenneth M. | Bochud, Murielle | Johnson, Andrew D. | Chasman, Daniel I. | Smith, Albert V. | Tobin, Martin D. | Verwoert, Germaine C. | Hwang, Shih-Jen | Pihur, Vasyl | Vollenweider, Peter | O'Reilly, Paul F. | Amin, Najaf | Bragg-Gresham, Jennifer L. | Teumer, Alexander | Glazer, Nicole L. | Launer, Lenore | Zhao, Jing Hua | Aulchenko, Yurii | Heath, Simon | Sõber, Siim | Parsa, Afshin | Luan, Jian'an | Arora, Pankaj | Dehghan, Abbas | Zhang, Feng | Lucas, Gavin | Hicks, Andrew A. | Jackson, Anne U. | Peden, John F. | Tanaka, Toshiko | Wild, Sarah H. | Rudan, Igor | Igl, Wilmar | Milaneschi, Yuri | Parker, Alex N. | Fava, Cristiano | Chambers, John C. | Kumari, Meena | JinGo, Min | van der Harst, Pim | Kao, Wen Hong Linda | Sjögren, Marketa | Vinay, D.G. | Alexander, Myriam | Tabara, Yasuharu | Shaw-Hawkins, Sue | Whincup, Peter H. | Liu, Yongmei | Shi, Gang | Kuusisto, Johanna | Seielstad, Mark | Sim, Xueling | Nguyen, Khanh-Dung Hoang | Lehtimäki, Terho | Matullo, Giuseppe | Wu, Ying | Gaunt, Tom R. | Charlotte Onland-Moret, N. | Cooper, Matthew N. | Platou, Carl G.P. | Org, Elin | Hardy, Rebecca | Dahgam, Santosh | Palmen, Jutta | Vitart, Veronique | Braund, Peter S. | Kuznetsova, Tatiana | Uiterwaal, Cuno S.P.M. | Campbell, Harry | Ludwig, Barbara | Tomaszewski, Maciej | Tzoulaki, Ioanna | Palmer, Nicholette D. | Aspelund, Thor | Garcia, Melissa | Chang, Yen-Pei C. | O'Connell, Jeffrey R. | Steinle, Nanette I. | Grobbee, Diederick E. | Arking, Dan E. | Hernandez, Dena | Najjar, Samer | McArdle, Wendy L. | Hadley, David | Brown, Morris J. | Connell, John M. | Hingorani, Aroon D. | Day, Ian N.M. | Lawlor, Debbie A. | Beilby, John P. | Lawrence, Robert W. | Clarke, Robert | Collins, Rory | Hopewell, Jemma C. | Ongen, Halit | Bis, Joshua C. | Kähönen, Mika | Viikari, Jorma | Adair, Linda S. | Lee, Nanette R. | Chen, Ming-Huei | Olden, Matthias | Pattaro, Cristian | Hoffman Bolton, Judith A. | Köttgen, Anna | Bergmann, Sven | Mooser, Vincent | Chaturvedi, Nish | Frayling, Timothy M. | Islam, Muhammad | Jafar, Tazeen H. | Erdmann, Jeanette | Kulkarni, Smita R. | Bornstein, Stefan R. | Grässler, Jürgen | Groop, Leif | Voight, Benjamin F. | Kettunen, Johannes | Howard, Philip | Taylor, Andrew | Guarrera, Simonetta | Ricceri, Fulvio | Emilsson, Valur | Plump, Andrew | Barroso, Inês | Khaw, Kay-Tee | Weder, Alan B. | Hunt, Steven C. | Bergman, Richard N. | Collins, Francis S. | Bonnycastle, Lori L. | Scott, Laura J. | Stringham, Heather M. | Peltonen, Leena | Perola, Markus | Vartiainen, Erkki | Brand, Stefan-Martin | Staessen, Jan A. | Wang, Thomas J. | Burton, Paul R. | SolerArtigas, Maria | Dong, Yanbin | Snieder, Harold | Wang, Xiaoling | Zhu, Haidong | Lohman, Kurt K. | Rudock, Megan E. | Heckbert, Susan R. | Smith, Nicholas L. | Wiggins, Kerri L. | Shriner, Daniel | Veldre, Gudrun | Viigimaa, Margus | Kinra, Sanjay | Prabhakaran, Dorairajan | Tripathy, Vikal | Langefeld, Carl D. | Rosengren, Annika | Thelle, Dag S. | MariaCorsi, Anna | Singleton, Andrew | Forrester, Terrence | Hilton, Gina | McKenzie, Colin A. | Salako, Tunde | Iwai, Naoharu | Kita, Yoshikuni | Ogihara, Toshio | Ohkubo, Takayoshi | Okamura, Tomonori | Ueshima, Hirotsugu | Umemura, Satoshi | Eyheramendy, Susana | Meitinger, Thomas | Wichmann, H.-Erich | Cho, Yoon Shin | Kim, Hyung-Lae | Lee, Jong-Young | Scott, James | Sehmi, Joban S. | Zhang, Weihua | Hedblad, Bo | Nilsson, Peter | Smith, George Davey | Wong, Andrew | Narisu, Narisu | Stančáková, Alena | Raffel, Leslie J. | Yao, Jie | Kathiresan, Sekar | O'Donnell, Chris | Schwartz, Steven M. | Arfan Ikram, M. | Longstreth, Will T. | Seshadri, Sudha | Shrine, Nick R.G. | Wain, Louise V. | Morken, Mario A. | Swift, Amy J. | Laitinen, Jaana | Prokopenko, Inga | Zitting, Paavo | Cooper, Jackie A. | Humphries, Steve E. | Danesh, John | Rasheed, Asif | Goel, Anuj | Hamsten, Anders | Watkins, Hugh | Bakker, Stephan J.L. | van Gilst, Wiek H. | Janipalli, Charles S. | Radha Mani, K. | Yajnik, Chittaranjan S. | Hofman, Albert | Mattace-Raso, Francesco U.S. | Oostra, Ben A. | Demirkan, Ayse | Isaacs, Aaron | Rivadeneira, Fernando | Lakatta, Edward G. | Orru, Marco | Scuteri, Angelo | Ala-Korpela, Mika | Kangas, Antti J. | Lyytikäinen, Leo-Pekka | Soininen, Pasi | Tukiainen, Taru | Würz, Peter | Twee-Hee Ong, Rick | Dörr, Marcus | Kroemer, Heyo K. | Völker, Uwe | Völzke, Henry | Galan, Pilar | Hercberg, Serge | Lathrop, Mark | Zelenika, Diana | Deloukas, Panos | Mangino, Massimo | Spector, Tim D. | Zhai, Guangju | Meschia, James F. | Nalls, Michael A. | Sharma, Pankaj | Terzic, Janos | Kranthi Kumar, M.J. | Denniff, Matthew | Zukowska-Szczechowska, Ewa | Wagenknecht, Lynne E. | Fowkes, Gerald R. | Charchar, Fadi J. | Schwarz, Peter E.H. | Hayward, Caroline | Guo, Xiuqing | Bots, Michiel L. | Brand, Eva | Samani, Nilesh J. | Polasek, Ozren | Talmud, Philippa J. | Nyberg, Fredrik | Kuh, Diana | Laan, Maris | Hveem, Kristian | Palmer, Lyle J. | van der Schouw, Yvonne T. | Casas, Juan P. | Mohlke, Karen L. | Vineis, Paolo | Raitakari, Olli | Wong, Tien Y. | Shyong Tai, E. | Laakso, Markku | Rao, Dabeeru C. | Harris, Tamara B. | Morris, Richard W. | Dominiczak, Anna F. | Kivimaki, Mika | Marmot, Michael G. | Miki, Tetsuro | Saleheen, Danish | Chandak, Giriraj R. | Coresh, Josef | Navis, Gerjan | Salomaa, Veikko | Han, Bok-Ghee | Kooner, Jaspal S. | Melander, Olle | Ridker, Paul M. | Bandinelli, Stefania | Gyllensten, Ulf B. | Wright, Alan F. | Wilson, James F. | Ferrucci, Luigi | Farrall, Martin | Tuomilehto, Jaakko | Pramstaller, Peter P. | Elosua, Roberto | Soranzo, Nicole | Sijbrands, Eric J.G. | Altshuler, David | Loos, Ruth J.F. | Shuldiner, Alan R. | Gieger, Christian | Meneton, Pierre | Uitterlinden, Andre G. | Wareham, Nicholas J. | Gudnason, Vilmundur | Rettig, Rainer | Uda, Manuela | Strachan, David P. | Witteman, Jacqueline C.M. | Hartikainen, Anna-Liisa | Beckmann, Jacques S. | Boerwinkle, Eric | Boehnke, Michael | Larson, Martin G. | Järvelin, Marjo-Riitta | Psaty, Bruce M. | Abecasis, Gonçalo R. | Elliott, Paul | van Duijn , Cornelia M. | Newton-Cheh, Christopher
Human Molecular Genetics  2011;20(11):2273-2284.
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
doi:10.1093/hmg/ddr092
PMCID: PMC3090190  PMID: 21378095
Journal of hypertension  2010;28(4):826-833.
Objective
The association between hypertension in pregnancy and future cardiovascular disease (CVD) increasingly is recognized. We aimed to assess the role of hypertension in pregnancy as an independent risk factor for hypertension, coronary heart disease (CHD), and stroke later in life.
Methods
Women who participated in the Phase 2 (2000–2004) Family Blood Pressure Program study (n = 4782) were categorized into women with no history of pregnancy lasting more than 6 months (n = 718), women with no history of hypertension in pregnancy (n = 3421), and women with a history of hypertension in at least one pregnancy (n = 643). We used Kaplan–Meier and Cox proportional hazard models to estimate and contrast the risks of subsequent diagnoses of hypertension, CHD, and stroke among the groups.
Results
Women with a history of hypertension in pregnancy, compared with those without such a history, were at increased risks for the subsequent diagnoses of hypertension (50% hypertensive at the age 53 vs. 60, P < 0.001), CHD (14% estimated event rate vs. 11%, P = 0.009), and stroke (12% estimated event rate vs. 5%, P < 0.001). The increased risk for subsequent hypertension remained significant after controlling for race, family history of CVD, smoking, dyslipidemia, and diabetes mellitus, with an adjusted hazard ratio of 1.88 [95% confidence interval (CI) 1.49–2.39, P < 0.001]. After controlling for traditional risk factors, including subsequent hypertension, the increased risk for stroke remained statistically significant (hazard ratio 2.10, 95% CI 1.19–3.71, P = 0.01), but not for CHD.
Conclusion
Hypertension in pregnancy may be an independent risk factor for subsequent diagnoses of hypertension and stroke. J Hypertens 28:826–833
doi:10.1097/HJH.0b013e328335c29a
PMCID: PMC2980863  PMID: 20087214
cardiovascular disease; hypertension; pregnancy; risk factors; stroke
Human Molecular Genetics  2009;18(15):2825-2838.
A previously reported blood pressure (BP) quantitative trait locus on rat Chromosome 1 was isolated in a short congenic segment spanning 804.6 kb. The 804.6 kb region contained only two genes, LOC306664 and LOC306665. LOC306664 is predicted to translate into A Disintegrin-like and Metalloproteinase with Thrombospondin Motifs-16 (Adamts16). LOC306665 is a novel gene. All predicted exons of both LOC306664 and LOC306665 were sequenced. Non-synonymous variants were identified in only one of these genes, LOC306664. These variants were naturally existing polymorphisms among inbred, outbred and wild rats. The full-length rat transcript of Adamts16 was detected in multiple tissues. Similar to ADAMTS16 in humans, expression of Adamts16 was prominent in the kidney. Renal transcriptome analysis suggested that a network of genes related to BP was differential between congenic and S rats. These genes were also differentially expressed between kidney cell lines with or without knock-down of Adamts16. Adamts16 is conserved between rats and humans. It is a candidate gene within the homologous region on human Chromosome 5, which is linked to systolic and diastolic BP in the Quebec Family Study. Multiple variants, including an Ala to Pro variant in codon 90 (rs2086310) of human ADAMTS16, were associated with human resting systolic BP (SBP). Replication study in GenNet confirmed the association of two variants of ADAMTS16 with SBP, including rs2086310. Overall, our report represents a high resolution positional cloning and translational study for Adamts16 as a candidate gene controlling BP.
doi:10.1093/hmg/ddp218
PMCID: PMC2706685  PMID: 19423552
Stature (adult body height), and body mass index (BMI) have a strong genetic component explaining observed variation in human populations, however, identifying those genetic components has been extremely challenging. It seems obvious that sample size is a critical determinant for successful identification of quantitative trait loci (QTL) that underlie the genetic architecture of these polygenic traits. The inherent shared environment and known genetic relationships in family studies provide clear advantages for gene mapping over studies utilizing unrelated individuals. To these ends, we combined the genotype and phenotype data from four previously performed family-based genome-wide screens resulting in a sample of 9.371 individuals from 3.032 African-American and European-American families and performed variance-components linkage analyses for stature and BMI. To our knowledge, this study represents the single largest family-based genome-wide linkage scan published for stature and BMI to date. This large study sample allowed us to pursue population-and sex-specific analyses as well. For stature we found evidence for linkage in previously reported loci on 11q23, 12q12, 15q25 and 18q23 as well as 15q26 and 19q13 which have not been linked to stature previously. For BMI we found evidence for two loci: one on 7q35 and another on 11q22 both of which have been previously linked to BMI in multiple populations. Our results show both the benefit of 1) combining data to maximize the sample size and 2) minimizing heterogeneity by analyzing subgroups where within-group variation can be reduced and suggest that the latter may be a more successful approach in genetic mapping.
doi:10.1038/ejhg.2008.152
PMCID: PMC2628452  PMID: 18781184
Body Height; Body Mass Index; Linkage mapping; Quantitative Trait Loci
Stature (adult body height) and body mass index (BMI) have a strong genetic component explaining observed variation in human populations; however, identifying those genetic components has been extremely challenging. It seems obvious that sample size is a critical determinant for successful identification of quantitative trait loci (QTL) that underlie the genetic architecture of these polygenic traits. The inherent shared environment and known genetic relationships in family studies provide clear advantages for gene mapping over studies utilizing unrelated individuals. To these ends, we combined the genotype and phenotype data from four previously performed family-based genome-wide screens resulting in a sample of 9.371 individuals from 3.032 African-American and European-American families and performed variance-components linkage analyses for stature and BMI. To our knowledge, this study represents the single largest family-based genome-wide linkage scan published for stature and BMI to date. This large study sample allowed us to pursue population- and sex-specific analyses as well. For stature, we found evidence for linkage in previously reported loci on 11q23, 12q12, 15q25 and 18q23, as well as 15q26 and 19q13, which have not been linked to stature previously. For BMI, we found evidence for two loci: one on 7q35 and another on 11q22, both of which have been previously linked to BMI in multiple populations. Our results show both the benefit of (1) combining data to maximize the sample size and (2) minimizing heterogeneity by analyzing subgroups where within-group variation can be reduced and suggest that the latter may be a more successful approach in genetic mapping.
doi:10.1038/ejhg.2008.152
PMCID: PMC2628452  PMID: 18781184
body height; body mass index; linkage mapping; quantitative trait loci
PLoS Genetics  2007;3(7):e115.
The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the strongest association with BMI (p = 8.6 ×10−7), hip circumference (p = 3.4 × 10−8), and weight (p = 9.1 × 10−7). In Sardinia, homozygotes for the rare “G” allele of this SNP (minor allele frequency = 0.46) were 1.3 BMI units heavier than homozygotes for the common “A” allele. Within the PFKP gene, rs6602024 showed very strong association with BMI (p = 4.9 × 10−6). Homozygotes for the rare “A” allele of this SNP (minor allele frequency = 0.12) were 1.8 BMI units heavier than homozygotes for the common “G” allele. To replicate our findings, we genotyped these two SNPs in the GenNet study. In European Americans (N = 1,496) and in Hispanic Americans (N = 839), we replicated significant association between rs9930506 in the FTO gene and BMI (p-value for meta-analysis of European American and Hispanic American follow-up samples, p = 0.001), weight (p = 0.001), and hip circumference (p = 0.0005). We did not replicate association between rs6602024 and obesity-related traits in the GenNet sample, although we found that in European Americans, Hispanic Americans, and African Americans, homozygotes for the rare “A” allele were, on average, 1.0–3.0 BMI units heavier than homozygotes for the more common “G” allele. In summary, we have completed a whole genome–association scan for three obesity-related quantitative traits and report that common genetic variants in the FTO gene are associated with substantial changes in BMI, hip circumference, and body weight. These changes could have a significant impact on the risk of obesity-related morbidity in the general population.
Author Summary
Although twin and family studies have clearly shown that genes play a role in obesity, it has proven quite difficult to identify the specific genetic variants involved. Here, we take advantage of recent technical and methodological advances to examine the role of common genetic variants on several obesity-related traits. By examining >4,000 Sardinians, we show that a specific genetic variant, rs9930506, and other nearby variants on human Chromosome 16 are associated with body mass index, hip circumference, and total body weight. The variants overlap FTO, a gene with poorly understood function. Further studies of the region may implicate new biological pathways affecting susceptibility to obesity. We also show that the association is not restricted to Sardinia but is also seen in independent samples of European Americans and Hispanic Americans. This finding is particularly important because obesity is associated with increased risk of cardiovascular disease and diabetes.
doi:10.1371/journal.pgen.0030115
PMCID: PMC1934391  PMID: 17658951
Background
The Family Blood Pressure Program is an ongoing, NHLBI-sponsored, multi-center program to study the genetic determinants of high blood pressure. The goal of this particular study was to study patterns of metabolic syndrome (MetS) in four ethnic groups: African Americans, Caucasians, Hispanics, and Asians.
Methods
A major part of participants in three networks GENOA, HyperGEN and SAPPHIRe were recruited mainly through hypertensive probands. MetS was defined as a categorical trait following the National Cholesterol Education Program definition (c-MetS). MetS was also characterized quantitatively through multivariate factor analyses (FA) of 10 risk variables (q-MetS). Logistic regression and frequency tables were used for studying associations among traits.
Results
Using the NCEP definition, the Hispanic sample, which by design was enriched for type 2 diabetes (T2D), had a very high prevalence of MetS (73%). In contrast, its prevalence in Chinese was the lowest (17%). In African Americans and Hispanics, c-MetS was more prevalent in women than in men. Association of c-MetS with type 2 diabetes (T2D) was prominent in the Hispanics and African Americans, less pronounced in the Whites and Japanese, (although still significant), and weakest in the Chinese sample.
Using FA without rotation, we found that the main factor loaded obesity (OBS) and blood pressure (BP) in African Americans; OBS and insulin (INS) in Hispanics, in Japanese, and in Whites; and OBS alone in Chinese. In Hispanics, Whites, and Japanese, BP loaded as a separate factor. Lipids in combination with INS also loaded in a separate factor. Using FA with Varimax rotation, 4 independent factors were identified: "Obesity-INS," "Blood pressure," "Lipids-INS," and "Central obesity." They explained about 60% of the variance present in the original risk variables.
Conclusion
MetS ethnic differences were identified. Ascertaining for hypertension or T2D increased the MetS prevalence in networks compared with the one in the US general population. Obesity was the most prominent risk factor contributing to both c-MetS and q-MetS. INS contributed in two important factors (obesity and lipids). The information imbedded into c-MetS trait /q-MetS factors scores can contribute in future research of the MetS, especially its utilization in the genetic analysis.
doi:10.1186/1743-7075-2-17
PMCID: PMC1201342  PMID: 16076393

Results 1-14 (14)