PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (38)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  A founder mutation in the Ashkenazi Jewish population affecting mRNA splicing of the CCM2 gene is associated with Cerebral Cavernous Malformations 
Purpose
Cerebral Cavernous Malformations (CCM) can occur sporadically or are caused by mutations in one of three identified genes. CCM often remain clinically silent until a mutation carrier suffers a stroke or seizure. Pre-symptomatic genetic testing has been valuable to follow and manage CCM mutation carriers. During routine diagnostic testing we identified a 2-base pair change in seven unrelated people of Ashkenazi Jewish (AJ) heritage. Due to the location of the variant beyond the invariant splice donor sequence, the change was reported as a variant of unknown significance. In this study we determined whether this change was a disease-causing mutation and whether it represents a founder mutation in the Ashkenazi Jewish population.
Methods
Transcripts arising from the normal and mutant alleles were examined by RT-PCR from affected and unaffected AJ CCM family members. A synthetic splicing system using a chimeric exon was employed to visualize the effects of the change on splice donor site utilization.
Results
The 2-base pair change in CCM2, c.30+5_6delinsTT, segregated with affected status in the study families. RT-PCR revealed loss of the transcript allele that was in phase with the mutation. The 2-base pair change, when tested in an in vitro synthetic splicing system, altered splice donor site utilization. Re-sequencing of the genomic region proximal and distal to the CCM2 gene mutation reveal a common SNP haplotype in affected individuals.
Conclusions
The 2-base pair change in CCM2, c.30+5_6delinsTT, disrupts proper splice donor utilization leading to a degraded transcript. SNP haplotype analysis demonstrates that this mutation is due to a founder in the AJ population. These data have the potential to simplify genetic testing for CCM in the AJ population.
doi:10.1097/GIM.0b013e318211ff8b
PMCID: PMC3132303  PMID: 21543988
Cerebral Cavernous Malformation; CCM2; mRNA splicing; founder mutation; Ashkenazi Jews
4.  Genome-wide Linkage Screen for Stature and Body-mass Index in 3.032 Families - Evidence for Sex- and Population-specific Genetic Effects 
Stature (adult body height), and body mass index (BMI) have a strong genetic component explaining observed variation in human populations, however, identifying those genetic components has been extremely challenging. It seems obvious that sample size is a critical determinant for successful identification of quantitative trait loci (QTL) that underlie the genetic architecture of these polygenic traits. The inherent shared environment and known genetic relationships in family studies provide clear advantages for gene mapping over studies utilizing unrelated individuals. To these ends, we combined the genotype and phenotype data from four previously performed family-based genome-wide screens resulting in a sample of 9.371 individuals from 3.032 African-American and European-American families and performed variance-components linkage analyses for stature and BMI. To our knowledge, this study represents the single largest family-based genome-wide linkage scan published for stature and BMI to date. This large study sample allowed us to pursue population-and sex-specific analyses as well. For stature we found evidence for linkage in previously reported loci on 11q23, 12q12, 15q25 and 18q23 as well as 15q26 and 19q13 which have not been linked to stature previously. For BMI we found evidence for two loci: one on 7q35 and another on 11q22 both of which have been previously linked to BMI in multiple populations. Our results show both the benefit of 1) combining data to maximize the sample size and 2) minimizing heterogeneity by analyzing subgroups where within-group variation can be reduced and suggest that the latter may be a more successful approach in genetic mapping.
doi:10.1038/ejhg.2008.152
PMCID: PMC2628452  PMID: 18781184
Body Height; Body Mass Index; Linkage mapping; Quantitative Trait Loci
5.  Correction: The Genetic Structure of Pacific Islanders 
PLoS Genetics  2008;4(3):10.1371/annotation/cbdd11a0-4a29-4e7c-9e4e-c00a184c7777.
doi:10.1371/annotation/cbdd11a0-4a29-4e7c-9e4e-c00a184c7777
PMCID: PMC2637087
6.  The Genetic Structure of Pacific Islanders 
PLoS Genetics  2008;4(1):e19.
Human genetic diversity in the Pacific has not been adequately sampled, particularly in Melanesia. As a result, population relationships there have been open to debate. A genome scan of autosomal markers (687 microsatellites and 203 insertions/deletions) on 952 individuals from 41 Pacific populations now provides the basis for understanding the remarkable nature of Melanesian variation, and for a more accurate comparison of these Pacific populations with previously studied groups from other regions. It also shows how textured human population variation can be in particular circumstances. Genetic diversity within individual Pacific populations is shown to be very low, while differentiation among Melanesian groups is high. Melanesian differentiation varies not only between islands, but also by island size and topographical complexity. The greatest distinctions are among the isolated groups in large island interiors, which are also the most internally homogeneous. The pattern loosely tracks language distinctions. Papuan-speaking groups are the most differentiated, and Austronesian or Oceanic-speaking groups, which tend to live along the coastlines, are more intermixed. A small “Austronesian” genetic signature (always <20%) was detected in less than half the Melanesian groups that speak Austronesian languages, and is entirely lacking in Papuan-speaking groups. Although the Polynesians are also distinctive, they tend to cluster with Micronesians, Taiwan Aborigines, and East Asians, and not Melanesians. These findings contribute to a resolution to the debates over Polynesian origins and their past interactions with Melanesians. With regard to genetics, the earlier studies had heavily relied on the evidence from single locus mitochondrial DNA or Y chromosome variation. Neither of these provided an unequivocal signal of phylogenetic relations or population intermixture proportions in the Pacific. Our analysis indicates the ancestors of Polynesians moved through Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there.
Author Summary
The origins and current genetic relationships of Pacific Islanders have been the subjects of interest and controversy for many decades. By analyzing the variation of a large number (687) of genetic markers in almost 1,000 individuals from 41 Pacific populations, and comparing these with East Asians and others, we contribute to the clarification and resolution of many of these issues. To judge by the populations in our survey, we find that Polynesians and Micronesians have almost no genetic relation to Melanesians, but instead are strongly related to East Asians, and particularly Taiwan Aborigines. A minority of Island Melanesian populations have indications of a small shared genetic ancestry with Polynesians and Micronesians (the ones that have this tie all speak related Austronesian languages). Inland groups who speak Papuan languages are particularly divergent and internally homogeneous. The genetic divergence among Island Melanesian populations, which is neatly organized by island, island size/topography, as well as their coastal or inland locations, is remarkable for such a small region, and enlarges our understanding of the texture of contemporary human variation.
doi:10.1371/journal.pgen.0040019
PMCID: PMC2211537  PMID: 18208337
7.  The Genetic Structure of Pacific Islanders 
PLoS Genetics  2008;4(1):e19.
Human genetic diversity in the Pacific has not been adequately sampled, particularly in Melanesia. As a result, population relationships there have been open to debate. A genome scan of autosomal markers (687 microsatellites and 203 insertions/deletions) on 952 individuals from 41 Pacific populations now provides the basis for understanding the remarkable nature of Melanesian variation, and for a more accurate comparison of these Pacific populations with previously studied groups from other regions. It also shows how textured human population variation can be in particular circumstances. Genetic diversity within individual Pacific populations is shown to be very low, while differentiation among Melanesian groups is high. Melanesian differentiation varies not only between islands, but also by island size and topographical complexity. The greatest distinctions are among the isolated groups in large island interiors, which are also the most internally homogeneous. The pattern loosely tracks language distinctions. Papuan-speaking groups are the most differentiated, and Austronesian or Oceanic-speaking groups, which tend to live along the coastlines, are more intermixed. A small “Austronesian” genetic signature (always <20%) was detected in less than half the Melanesian groups that speak Austronesian languages, and is entirely lacking in Papuan-speaking groups. Although the Polynesians are also distinctive, they tend to cluster with Micronesians, Taiwan Aborigines, and East Asians, and not Melanesians. These findings contribute to a resolution to the debates over Polynesian origins and their past interactions with Melanesians. With regard to genetics, the earlier studies had heavily relied on the evidence from single locus mitochondrial DNA or Y chromosome variation. Neither of these provided an unequivocal signal of phylogenetic relations or population intermixture proportions in the Pacific. Our analysis indicates the ancestors of Polynesians moved through Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there.
Author Summary
The origins and current genetic relationships of Pacific Islanders have been the subjects of interest and controversy for many decades. By analyzing the variation of a large number (687) of genetic markers in almost 1,000 individuals from 41 Pacific populations, and comparing these with East Asians and others, we contribute to the clarification and resolution of many of these issues. To judge by the populations in our survey, we find that Polynesians and Micronesians have almost no genetic relation to Melanesians, but instead are strongly related to East Asians, and particularly Taiwan Aborigines. A minority of Island Melanesian populations have indications of a small shared genetic ancestry with Polynesians and Micronesians (the ones that have this tie all speak related Austronesian languages). Inland groups who speak Papuan languages are particularly divergent and internally homogeneous. The genetic divergence among Island Melanesian populations, which is neatly organized by island, island size/topography, as well as their coastal or inland locations, is remarkable for such a small region, and enlarges our understanding of the texture of contemporary human variation.
doi:10.1371/journal.pgen.0040019
PMCID: PMC2211537  PMID: 18208337
8.  Low Levels of Genetic Divergence across Geographically and Linguistically Diverse Populations from India 
PLoS Genetics  2006;2(12):e215.
Ongoing modernization in India has elevated the prevalence of many complex genetic diseases associated with a western lifestyle and diet to near-epidemic proportions. However, although India comprises more than one sixth of the world's human population, it has largely been omitted from genomic surveys that provide the backdrop for association studies of genetic disease. Here, by genotyping India-born individuals sampled in the United States, we carry out an extensive study of Indian genetic variation. We analyze 1,200 genome-wide polymorphisms in 432 individuals from 15 Indian populations. We find that populations from India, and populations from South Asia more generally, constitute one of the major human subgroups with increased similarity of genetic ancestry. However, only a relatively small amount of genetic differentiation exists among the Indian populations. Although caution is warranted due to the fact that United States–sampled Indian populations do not represent a random sample from India, these results suggest that the frequencies of many genetic variants are distinctive in India compared to other parts of the world and that the effects of population heterogeneity on the production of false positives in association studies may be smaller in Indians (and particularly in Indian-Americans) than might be expected for such a geographically and linguistically diverse subset of the human population.
Synopsis
Genomic studies of human genetic variation are useful for investigating human evolutionary history, as well as for designing strategies for identifying disease-related genes. Despite its large population and its increasing complex genetic disease burden as a result of modernization, India has been excluded from most of the largest genomic surveys.
The authors performed an extensive investigation of Indian genetic diversity and population relationships, sampling 15 groups of India-born immigrants to the United States and genotyping each individual at 1,200 genetic markers genome-wide. Populations from India, and groups from South Asia more generally, form a genetic cluster, so that individuals placed within this cluster are more genetically similar to each other than to individuals outside the cluster. However, the amount of genetic differentiation among Indian populations is relatively small. The authors conclude that genetic variation in India is distinctive with respect to the rest of the world, but that the level of genetic divergence is smaller in Indians than might be expected for such a geographically and linguistically diverse group.
doi:10.1371/journal.pgen.0020215
PMCID: PMC1713257  PMID: 17194221
9.  Low Levels of Genetic Divergence across Geographically and Linguistically Diverse Populations from India 
PLoS Genetics  2006;2(12):e215.
Ongoing modernization in India has elevated the prevalence of many complex genetic diseases associated with a western lifestyle and diet to near-epidemic proportions. However, although India comprises more than one sixth of the world's human population, it has largely been omitted from genomic surveys that provide the backdrop for association studies of genetic disease. Here, by genotyping India-born individuals sampled in the United States, we carry out an extensive study of Indian genetic variation. We analyze 1,200 genome-wide polymorphisms in 432 individuals from 15 Indian populations. We find that populations from India, and populations from South Asia more generally, constitute one of the major human subgroups with increased similarity of genetic ancestry. However, only a relatively small amount of genetic differentiation exists among the Indian populations. Although caution is warranted due to the fact that United States–sampled Indian populations do not represent a random sample from India, these results suggest that the frequencies of many genetic variants are distinctive in India compared to other parts of the world and that the effects of population heterogeneity on the production of false positives in association studies may be smaller in Indians (and particularly in Indian-Americans) than might be expected for such a geographically and linguistically diverse subset of the human population.
Synopsis
Genomic studies of human genetic variation are useful for investigating human evolutionary history, as well as for designing strategies for identifying disease-related genes. Despite its large population and its increasing complex genetic disease burden as a result of modernization, India has been excluded from most of the largest genomic surveys.
The authors performed an extensive investigation of Indian genetic diversity and population relationships, sampling 15 groups of India-born immigrants to the United States and genotyping each individual at 1,200 genetic markers genome-wide. Populations from India, and groups from South Asia more generally, form a genetic cluster, so that individuals placed within this cluster are more genetically similar to each other than to individuals outside the cluster. However, the amount of genetic differentiation among Indian populations is relatively small. The authors conclude that genetic variation in India is distinctive with respect to the rest of the world, but that the level of genetic divergence is smaller in Indians than might be expected for such a geographically and linguistically diverse group.
doi:10.1371/journal.pgen.0020215
PMCID: PMC1713257  PMID: 17194221
10.  Clinical applications of Genome Polymorphism Scans 
Biology Direct  2006;1:16.
Applications of Genome Polymorphism Scans range from the relatively simple such as gender determination and confirmation of biological relationships, to the relatively complex such as determination of autozygosity and propagation of genetic information throughout pedigrees. Unlike nearly all other clinical DNA tests, the Scan is a universal test – it covers all people and all genes. In balance, I argue that the Genome Polymorphism Scan is the most powerful, affordable clinical DNA test available today.
Reviewers: This article was reviewed by Scott Weiss (nominated by Neil Smalheiser), Roberta Pagon (nominated by Jerzy Jurka) and Val Sheffield (nominated by Neil Smalheiser).
doi:10.1186/1745-6150-1-16
PMCID: PMC1524726  PMID: 16756678
11.  STRP Screening Sets for the human genome at 5 cM density 
BMC Genomics  2003;4:6.
Background
Short tandem repeat polymorphisms (STRPs) are powerful tools for gene mapping and other applications. A STRP genome scan of 10 cM is usually adequate for mapping single gene disorders. However mapping studies involving genetically complex disorders and especially association (linkage disequilibrium) often require higher STRP density.
Results
We report the development of two separate 10 cM human STRP Screening Sets (Sets 12 and 52) which span all chromosomes. When combined, the two Sets contain a total of 782 STRPs, with average STRP spacing of 4.8 cM, average heterozygosity of 0.72, and total sex-average coverage of 3535 cM. The current Sets are comprised almost entirely of STRPs based on tri- and tetranucleotide repeats. We also report correction of primer sequences for many STRPs used in previous Screening Sets. Detailed information for the new Screening Sets is available from our web site: .
Conclusion
Our new human STRP Screening Sets will improve the quality and cost effectiveness of genotyping for gene mapping and other applications.
doi:10.1186/1471-2164-4-6
PMCID: PMC152641  PMID: 12600278
18.  Dinucleotide repeat polymorphism at the D18S34 locus 
Nucleic Acids Research  1990;18(11):3431.
Images
PMCID: PMC330986  PMID: 1972571

Results 1-25 (38)