Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Combined protein- and nucleic acid-level effects of rs1143679 (R77H), a lupus-predisposing variant within ITGAM 
Human Molecular Genetics  2014;23(15):4161-4176.
Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10−90, odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele (‘A’) relative to the non-risk allele (‘G’), in a dose-dependent fashion: (‘AA’ < ‘AG’ < ‘GG’). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the ‘A’ transcript than ‘G’ transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
PMCID: PMC4082363  PMID: 24608226
2.  Allelic heterogeneity in NCF2 associated with systemic lupus erythematosus (SLE) susceptibility across four ethnic populations 
Human Molecular Genetics  2013;23(6):1656-1668.
Recent reports have associated NCF2, encoding a core component of the multi-protein NADPH oxidase (NADPHO), with systemic lupus erythematosus (SLE) susceptibility in individuals of European ancestry. To identify ethnicity-specific and -robust variants within NCF2, we assessed 145 SNPs in and around the NCF2 gene in 5325 cases and 21 866 controls of European-American (EA), African-American (AA), Hispanic (HS) and Korean (KR) ancestry. Subsequent imputation, conditional, haplotype and bioinformatic analyses identified seven potentially functional SLE-predisposing variants. Association with non-synonymous rs17849502, previously reported in EA, was detected in EA, HS and AA (PEA = 1.01 × 10−54, PHS = 3.68 × 10−10, PAA = 0.03); synonymous rs17849501 was similarly significant. These SNPs were monomorphic in KR. Novel associations were detected with coding variants at rs35937854 in AA (PAA = 1.49 × 10−9), and rs13306575 in HS and KR (PHS = 7.04 × 10−7, PKR = 3.30 × 10−3). In KR, a 3-SNP haplotype was significantly associated (P = 4.20 × 10−7), implying that SLE predisposing variants were tagged. Significant SNP–SNP interaction (P = 0.02) was detected between rs13306575 and rs17849502 in HS, and a dramatically increased risk (OR = 6.55) with a risk allele at each locus. Molecular modeling predicts that these non-synonymous mutations could disrupt NADPHO complex assembly. The risk allele of rs17849501, located in a conserved transcriptional regulatory region, increased reporter gene activity, suggesting in vivo enhancer function. Our results not only establish allelic heterogeneity within NCF2 associated with SLE, but also emphasize the utility of multi-ethnic cohorts to identify predisposing variants explaining additional phenotypic variance (‘missing heritability’) of complex diseases like SLE.
PMCID: PMC3929085  PMID: 24163247
3.  Evaluation of SLE Susceptibility Genes in Malaysians 
Autoimmune Diseases  2014;2014:305436.
Systemic Lupus Erythematosus (SLE) is a clinically heterogeneous autoimmune disease with strong genetic and environmental components. Our objective was to replicate 25 recently identified SLE susceptibility genes in two distinct populations (Chinese (CH) and Malays (MA)) from Malaysia. We genotyped 347 SLE cases and 356 controls (CH and MA) using the ImmunoChip array and performed an admixture corrected case-control association analysis. Associated genes were grouped into five immune-related pathways. While CH were largely homogenous, MA had three ancestry components (average 82.3% Asian, 14.5% European, and 3.2% African). Ancestry proportions were significantly different between cases and controls in MA. We identified 22 genes with at least one associated SNP (P < 0.05). The strongest signal was at HLA-DRA (PMeta = 9.96 × 10−9; PCH = 6.57 × 10−8, PMA = 6.73 × 10−3); the strongest non-HLA signal occurred at STAT4 (PMeta = 1.67 × 10−7; PCH = 2.88 × 10−6, PMA = 2.99 × 10−3). Most of these genes were associated with B- and T-cell function and signaling pathways. Our exploratory study using high-density fine-mapping suggests that most of the established SLE genes are also associated in the major ethnicities of Malaysia. However, these novel SNPs showed stronger association in these Asian populations than with the SNPs reported in previous studies.
PMCID: PMC3948475  PMID: 24696779
4.  PTPN22 Association in Systemic Lupus Erythematosus (SLE) with Respect to Individual Ancestry and Clinical Sub-Phenotypes 
PLoS ONE  2013;8(8):e69404.
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7×10−9, OR = 1.40 (95% CI = 1.25–1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67–0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7×10−5, OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
PMCID: PMC3737240  PMID: 23950893
5.  Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production 
PLoS Genetics  2013;9(2):e1003222.
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22–24 (LOD = 6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ∼1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [Pmeta = 5.20×10−14; odds ratio, 95% confidence interval = 0.82 (0.78–0.87)], and two missense variants, rs1990760 (Ala946Thr) [Pmeta = 3.08×10−7; 0.88 (0.84–0.93)] and rs10930046 (Arg460His) [Pdom = 1.16×10−8; 0.70 (0.62–0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo. Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
Author Summary
African-Americans (AA) are at increased risk of systemic lupus erythematosus (SLE), but the genetic basis of this risk increase is largely unknown. We used admixture mapping to localize disease-causing genetic variants that differ in frequency across populations. This approach is advantageous for localizing susceptibility genes in recently admixed populations like AA. Our genome-wide admixture scan identified seven admixture signals, and we followed the best signal at 2q22–24 with fine-mapping, imputation-based association analysis and experimental validation. We identified two independent coding variants and a non-coding variant within the IFIH1 gene associated with SLE. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
PMCID: PMC3575474  PMID: 23441136
6.  Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases 
Autoimmunity Reviews  2011;11(4):276-280.
Many autoimmune diseases (ADs) share similar underlying pathology and have a tendency to cluster within families, supporting the involvement of shared susceptibility genes. To date, most of the genetic variants associated with systemic lupus erythematosus (SLE) susceptibility also show association with others ADs. ITGAM and its associated ‘predisposing’ variant (rs1143679, Arg77His), predicted to alter the tertiary structures of the ligand-binding domain of ITGAM, may play a key role for SLE pathogenesis. The aim of this study is to examine whether the ITGAM variant is also associated with other ADs. We evaluated case-control association between rs1143679 and ADs (N=18,457) including primary Sjögren’s syndrome, systemic sclerosis, multiple sclerosis, rheumatoid arthritis, juvenile idiopathic arthritis, celiac disease, and type-1 diabetes. We also performed meta-analyses using our data in addition to available published data. Although the risk allele ‘A’ is relatively more frequent among cases for each disease, it was not significantly associated with any other ADs tested in this study. However, the meta-analysis for systemic sclerosis was associated with rs1143679 (pmeta=0.008). In summary, this study explored the role of ITGAM in general autoimmunity in seven non-lupus ADs, and only found association for systemic sclerosis when our results were combined with published results. Thus ITGAM may not be a general autoimmunity gene but this variant may be specifically associated with SLE and systemic sclerosis.
PMCID: PMC3224188  PMID: 21840425
ITGAM; autoimmune diseases; genetic susceptibility
7.  Evaluation of 19 Autoimmune Disease-associated Loci with Rheumatoid Arthritis in a Colombian Population: Evidence for Replication and Gene-Gene Interaction 
The Journal of rheumatology  2011;38(9):1866-1870.
Recent studies have identified several common genes associated with multiple autoimmune diseases that support the hypothesis of the presence of shared or general autoimmunity genes. However, most of this work has been performed in populations of white origin. The main objectives of this study are to replicate the genotype-phenotype correlation between 19 such variants and rheumatoid arthritis (RA), and to evaluate gene-gene interactions between these genes in individuals from an ethnically homogenous nonwhite Colombian population.
Nineteen single-nucleotide polymorphisms (SNP) from 16 genes/loci were genotyped in 353 RA cases and 368 controls. For each SNP, allelic and genotype-based association tests were applied to evaluate genotype-phenotype correlation. Permutation-based tests were used to validate the statistical significance. Gene-gene interactions were assessed by logistic regression.
We replicated the genetic association with rs13277113 (p = 0.0009, OR 1.46) and rs2736340 (p = 0.0001, OR 1.63) from C8orf13-BLK (8p23.1, associated with RA and systemic lupus erythematosus), and rs763361 (p = 0.03) from CD226 (18q22.3, associated with multiple sclerosis and type 1 diabetes) in the Colombian population. The population-attributable risks were estimated as 27%, 34%, and 16% for rs13277113, rs2736340, and rs763361, respectively. We also detected evidence for gene-gene interaction between SNP in MMEL1 (rs3890745) and C80rf13-BLK (rs13277113; p = 0.0002).
Our results demonstrate that the IL2/IL21 region, C8orf13-BLK, and CD226 influence RA in Colombians, and RA shares some of the pathogenic mechanisms associated with other autoimmune diseases.
PMCID: PMC3170719  PMID: 21765104
8.  Fine mapping and trans-ethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21 
Arthritis and rheumatism  2011;63(6):1689-1697.
Genetic association of the IL2/IL21 region at 4q27 has been previously reported in lupus and a number of autoimmune and inflammatory diseases. Herein, using a very large cohort of lupus patients and controls, we localize this genetic effect to the IL21 gene.
We genotyped 45 tag SNPs across the IL2/IL21 locus in two large independent lupus sample sets. We studied a European-derived set consisting of 4,248 lupus patients and 3,818 healthy controls, and an African-American set of 1,569 patients and 1,893 healthy controls. Imputation in 3,004 WTCCC additional control individuals was also performed. Genetic association between the genotyped markers was determined, and pair-wise conditional analysis was performed to localize the independent genetic effect in the IL2/IL21 locus in lupus.
We established and confirmed the genetic association between IL2/IL21 and lupus. Using conditional analysis and trans-ethnic mapping, we localized the genetic effect in this locus to two SNPs in high linkage disequilibrium; rs907715 located within IL21 (OR=1.16 (1.10–1.22), P= 2.17 ×10−8), and rs6835457 located in the 3’-UTR flanking region of IL21 (OR= 1.11 (1.05–1.17), P= 9.35×10−5).
We have established the genetic association between lupus and IL2/IL21 with a genome-wide level of significance. Further, we localized this genetic association within the IL2/IL21 linkage disequilibrium block to IL21. If other autoimmune IL2/IL21 genetic associations are similarly localized, then the IL21 risk alleles would be predicted to operate in a fundamental mechanism that influences the course of a number of autoimmune disease processes.
PMCID: PMC3106139  PMID: 21425124
9.  Non-synonymous variant (Gly307Ser) in CD226 is associated with susceptibility to multiple autoimmune diseases 
Rheumatology (Oxford, England)  2010;49(7):1239-1244.
Objectives. Recently, a non-synonymous (Gly307Ser) variant, rs763361, in the CD226 gene was shown to be associated with multiple autoimmune diseases (ADs) in European Caucasian populations. However, shared autoimmunity with CD226 has not been evaluated in non-European populations. The aim of the present study is to assess the association of this single nucleotide polymorphism (SNP) with ADs in non-European populations.
Methods. To replicate this association in non-European populations, we evaluated case–control association between rs763361 and coeliac disease (CED) samples from Argentina; SLE, RA, type-1 diabetes (T1D) and primary SS (pSS) from Colombia; and SLE samples from China and Japan. We genotyped rs763361 and evaluated its genetic association with multiple ADs, using χ2-test. For each association, odds ratio (OR) and 95% CI were calculated.
Results. We show that rs763361 is significantly associated with Argentinean CED (P = 0.0009, OR = 1.60). We also observed a trend of possible association with Chinese SLE (P = 0.01, OR = 1.19), RA (P = 0.047, OR = 1.25), SLE (P = 0.0899, OR = 1.24) and pSS (P = 0.09, OR = 1.33) in Colombians. Meta-analyses for SLE (using our three populations) and T1D (our population and three published populations) yielded significant association with rs763361, P = 0.009 (OR = 1.16) and P = 1.1.46 × 10−9 (OR = 1.14), respectively.
Conclusions. Our results demonstrate that the coding variant rs763361 in CD226 gene is associated with multiple ADs in non-European populations.
PMCID: PMC2909799  PMID: 20338887
CD226; Autoimmunity; Latin-America; Asia
10.  Confirmation of an Association Between rs6822844 at the IL2–IL21 Region and Multiple Autoimmune Diseases 
Arthritis and rheumatism  2010;62(2):323-329.
Autoimmune diseases often have susceptibility genes in common, indicating similar molecular mechanisms. Increasing evidence suggests that rs6822844 at the IL2–IL21 region is strongly associated with multiple autoimmune diseases in individuals of European descent. This study was undertaken to attempt to replicate the association between rs6822844 and 6 different immune-mediated diseases in non-European populations, and to perform disease-specific and overall meta-analyses using data from previously published studies.
We evaluated case–control associations between rs6822844 and celiac disease (CD) in subjects from Argentina; rheumatoid arthritis (RA), type 1 diabetes mellitus (DM), primary Sjögren's syndrome (SS), and systemic lupus erythematosus (SLE) in subjects from Colombia; and Behçet's disease (BD) in subjects from Turkey. Allele and gene distributions were compared between cases and controls. Meta-analyses were performed using data from the present study and previous studies.
We detected significant associations of rs6822844 with SLE (P = 0.008), type 1 DM (P = 0.014), RA (P = 0.019), and primary SS (P = 0.033) but not with BD (P = 0.34) or CD (P = 0.98). We identified little evidence of population differentiation (FST = 0.01) within cases and controls from Argentina and Colombia, suggesting that association was not influenced by population substructure. Disease-specific meta-analysis indicated significant association for RA (Pmeta = 3.61 × 10–6), inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis) (Pmeta = 3.48 × 10–12), type 1 DM (Pmeta = 5.33 × 10–5), and CD (Pmeta = 5.30 × 10–3). Overall meta-analysis across all autoimmune diseases reinforced association with rs6822844 (23 data sets; Pmeta = 2.61 × 10–25, odds ratio 0.73 [95% confidence interval 0.69–0.78]).
Our results indicate that there is an association between rs6822844 and multiple auto-immune diseases in non-European populations. Meta-analysis results strongly reinforce this robust association across multiple autoimmune diseases in both European-derived and non-European populations.
PMCID: PMC3028384  PMID: 20112382
11.  ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash, and immunologic manifestations in lupus patients with European ancestry 
Annals of the rheumatic diseases  2009;69(7):1329-1332.
We hypothesized that the coding variant (R77H), rs1143679, within ITGAM could predict specific clinical manifestations associated with lupus.
To assess genetic association, 2366 lupus cases and 2931 unaffected controls with European ancestry were analyzed. Lupus patients were coded by the presence or absence of individual ACR criteria. Logistic regression and Pearson chi-square tests were used to assess statistical significance.
First, for overall case-control analysis, we detected highly significant (p=2.22×10−21, OR=1.73) association. Second, using case-only analysis we detected significant association with renal criteria (p=0.0003), discoid rash (p=0.02), and immunologic criteria (p=0.04). Third, we compared them with healthy controls, the association became stronger for renal (p=4.69×10−22, OR=2.15), discoid (p=1.77×10−14, OR=2.03), and immunologic (p=3.49×10−22, OR = 1.86) criteria. Risk allele frequency increased from 10.6% (controls) to 17.0% (lupus), 20.4% (renal), 18.1% (immunologic), and 19.5% (discoid).
These results demonstrated a strong association between the risk allele (A) at rs1143679 and renal disease, discoid rash, and immunological manifestations of lupus.
PMCID: PMC2891778  PMID: 19939855
12.  Evaluation of imputation-based association in and around the integrin-α-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE) 
Human Molecular Genetics  2009;18(6):1171-1180.
We recently identified a novel non-synonymous variant, rs1143679, at exon 3 of the ITGAM gene associated with systemic lupus erythematosus (SLE) susceptibility in European-Americans (EAs) and African-Americans. Using genome-wide association approach, three other studies also independently reported an association between SLE susceptibility and ITGAM or ITGAM-ITGAX region. The primary objectives of this study are to assess whether single or multiple causal variants from the same gene or any nearby gene(s) are involved in SLE susceptibility and to confirm a robust ITGAM association across nine independent data sets (n = 8211). First, we confirmed our previously reported association of rs1143679 (risk allele ‘A’) with SLE in EAs (P = 1.0 × 10−8) and Hispanic-Americans (P = 2.9 × 10−5). Secondly, using a comprehensive imputation-based association test, we found that ITGAM is one of the major non-human leukocyte antigen susceptibility genes for SLE, and the strongest association for EA is the same coding variant rs1143679 (log10Bayes factor=20, P = 6.17 × 10−24). Thirdly, we determined the robustness of rs1143679 association with SLE across three additional case–control samples, including UK (P = 6.2 × 10−8), Colombian (P = 3.6 × 10−7), Mexican (P = 0.002), as well as two independent sets of trios from UK (PTDT = 1.4 × 10−5) and Mexico (PTDT = 0.015). A meta-analysis combing all independent data sets greatly reinforces the association (Pmeta = 7.1 × 10−50, odds ratio = 1.83, 95% confidence interval = 1.69–1.98, n = 10 046). However, this ITGAM association was not observed in the Korean or Japanese samples, in which rs1143679 is monomorphic for the non-risk allele (G). Taken together along with our earlier findings, these results demonstrate that the coding variant, rs1143679, best explains the ITGAM-SLE association, especially in European- and African-derived populations, but not in Asian populations.
PMCID: PMC2649018  PMID: 19129174
13.  Genetic Associations of LYN with Systemic Lupus Erythematosus 
Genes and immunity  2009;10(5):397-403.
We targeted LYN, a src-tyosine kinase involved in B cell activation, in case-control association studies using populations of European American, African American and Korean subjects. Our combined European-derived population, consisting of 2463 independent cases and 3131 unrelated controls, demonstrates significant association with rs6983130 in a female-only analysis with 2254 cases and 2228 controls (p=1.1 × 10−4, OR=0.81 (95% CI: 0.73 – 0.90)). This SNP is located in the 5′ UTR within the first intron near the transcription initiation site of LYN. Additional SNPs upstream of the first exon also show weak and sporadic association in subsets of the total European American population. Multivariate logistic regression analysis implicates rs6983130 as a protective factor for SLE susceptibility when anti-dsDNA, anti-chromatin, anti-52 kDa Ro or anti-Sm autoantibody status were used as covariates. Subset analysis of the European American female cases by ACR classification criteria reveals a reduction in the risk of hematologic disorder with rs6983130 compared to cases without hematologic disorders (p=1.5 × 10−3, OR=0.75 (95% C.I.=0.62-0.89)). None of the 90 SNPs tested demonstrate significant association with SLE in the African American or Korean populations. These results support an association of LYN with European-derived individuals with SLE, especially within autoantibody or clinical subsets.
PMCID: PMC2750001  PMID: 19369946
systemic lupus erythematosus; association; LYN; SNP
14.  Replication of the BANK1 genetic association with systemic lupus erythematosus in a European-Derived Population 
Genes and immunity  2009;10(5):531-538.
Systemic lupus erythematosus (SLE) is an autoimmune disease with highly variable clinical presentation. Patients suffer from immunological abnormalities that target T cell, B cell and accessory cell functions. B cells are hyperactive in SLE patients. An adaptor protein expressed in B cells called BANK1 (B-cell scaffold protein with ankyrin repeats) was reported in a previous study to be associated with SLE in a European population. The objective of this study is to assess the BANK1 genotype-phenotype association in an independent replication sample. We genotyped 38 single nucleotide polymorphisms (SNPs) in BANK1 on 1892 European-derived SLE patients and 2652 European-derived controls. The strongest associations with SLE and BANK1 were at rs17266594 (corrected p-value=1.97 × 10−5, OR=1.22, 95% C.I.(1.12–1.34)) and rs10516487 (corrected p-value=2.59 × 10−5, OR=1.22, 95% C.I.(1.11–1.34)). Our findings suggest that the association is explained by these two SNPs, confirming previous reports that these polymorphisms contribute to the risk of developing lupus. Analysis of patient subsets enriched for hematological, immunological and renal ACR criteria or the levels of autoantibodies, such as anti-RNP A and anti-SmRNP, uncovers additional BANK1 associations. Our results suggest that BANK1 polymorphisms alter immune system development and function to increase the risk for developing lupus.
PMCID: PMC2736873  PMID: 19339986
systemic lupus erythematosus; replication; association; European; BANK1
15.  Admixture in Hispanic-Americans: Its impact on ITGAM association and implications for admixture mapping in SLE 
Genes and immunity  2009;10(5):539-545.
Systemic Lupus Erythematosus (SLE) disproportionately affects minorities, such as Hispanic-Americans. Prevalence of SLE is 3–5 times higher in Hispanic Americans (HA) than European derived populations, and have more active disease at the time of diagnosis, with more serious organ system involvement. HA is an admixed population, it is possible that there is an effect of admixture on the relative risk of disease. This admixture can create substantial increase of linkage disequilibrium (LD) in both magnitude and range, which can provide a unique opportunity for admixture mapping. Main objectives of this study are to (a) estimate hidden population structure in HA individuals; (b) estimate individual ancestry proportions and its impact on SLE risk; (c) assess impact of admixture on ITGAM association, a recently identified SLE susceptibility gene; and (d) estimate power of admixture mapping in HA. Our dataset contained 1,125 individuals, of whom 884 (657 SLE cases and 227 controls) were self classified as HA. Using 107 unlinked ancestry informative markers (AIMs) we estimated hidden population structure and individual ancestry in HA. Out of 5,671 possible pair-wise LD, 54% were statistically significant, indicating recent population admixture. The best fitted model for HA was a four population model with average ancestry of European (48%), American-Indian (40%), African (8%) and a fourth population (4%) with unknown ancestry. We also identified significant higher risk associated with American-Indian ancestry (OR=4.84, P=0.0001, 95%CI=2.14—10.95) on overall SLE. We showed that ITGAM is associated as a risk factor for SLE (OR= 2.06, P=8.74×10−5, 95%CI=1.44–2.97). This association is not affected by population substructure or admixture. We have demonstrated that HA have great potential and are an 3 appropriate population for admixture mapping. As expected, the case-only design is more powerful than case-control design, for any given admixture proportion or ancestry risk ratio.
PMCID: PMC2714406  PMID: 19387459
SLE; Association; Hispanics; Admixture mapping; Hispanic-American; Population structure
16.  Replication of recently identified associated single-nucleotide polymorphisms from six autoimmune diseases in Genetic Analysis Workshop 16 rheumatoid arthritis data 
BMC Proceedings  2009;3(Suppl 7):S31.
Many autoimmune diseases share similar underlying pathology and have a tendency to cluster within families, giving rise to the concept of shared susceptibility genes among them. In the Genetic Analysis Workshop 16 rheumatoid arthritis (RA) data we sought to replicate the genetic association between single-nucleotide polymorphisms (SNPs) identified in recent genome-wide association studies (GWAS) on RA and five other autoimmune diseases. We identified 164 significantly associated non-HLA SNPs (p < 10-5) from 16 GWAS and 13 candidate gene studies on six different autoimmune diseases, including RA, systemic lupus erythematosus, type 1 diabetes, Crohn disease, multiple sclerosis, and celiac disease. Using both direct and imputation-based association test, we replicated 16 shared susceptibility regions involving RA and at least one of the other autoimmune diseases. We also identified hidden population structure within cases and controls in Genetic Analysis Workshop 16 RA data and assessed the effect of population structure on the shared autoimmunity regions. Because multiple autoimmune diseases share common genetic origin, these could be areas of immense interest for further genetic and clinical association studies.
PMCID: PMC2795929  PMID: 20018022
17.  Osteopontin and Systemic Lupus Erythematosus Association: A Probable Gene-Gender Interaction 
PLoS ONE  2008;3(3):e1757.
Osteopontin (SPP1) is an important bone matrix mediator found to have key roles in inflammation and immunity. SPP1 genetic polymorphisms and increased osteopontin protein levels have been reported to be associated with SLE in small patient collections. The present study evaluates association between SPP1 polymorphisms and SLE in a large cohort of 1141 unrelated SLE patients [707 European-American (EA) and 434 African-American (AA)], and 2009 unrelated controls (1309 EA and 700 AA). Population-based case-control association analyses were performed. To control for potential population stratification, admixture adjusted logistic regression, genomic control (GC), structured association (STRAT), and principal components analysis (PCA) were applied. Combined analysis of 2 ethnic groups, showed the minor allele of 2 SNPs (rs1126616T and rs9138C) significantly associated with higher risk of SLE in males (P = 0.0005, OR = 1.73, 95% CI = 1.28–2.33), but not in females. Indeed, significant gene-gender interactions in the 2 SNPs, rs1126772 and rs9138, were detected (P = 0.001 and P = 0.0006, respectively). Further, haplotype analysis identified rs1126616T-rs1126772A-rs9138C which demonstrated significant association with SLE in general (P = 0.02, OR = 1.30, 95%CI 1.08–1.57), especially in males (P = 0.0003, OR = 2.42, 95%CI 1.51–3.89). Subgroup analysis with single SNPs and haplotypes also identified a similar pattern of gender-specific association in AA and EA. GC, STRAT, and PCA results within each group showed consistent associations. Our data suggest SPP1 is associated with SLE, and this association is especially stronger in males. To our knowledge, this report serves as the first association of a specific autosomal gene with human male lupus.
PMCID: PMC2258418  PMID: 18335026
18.  A genome-wide ordered-subset linkage analysis for rheumatoid arthritis 
BMC Proceedings  2007;1(Suppl 1):S101.
Rheumatoid arthritis (RA) is a chronic, complex autoimmune inflammatory disorder with poorly known etiology. Approximately 1% of the adult population is afflicted with RA. Linkage analysis of RA can be complicated by the presence of phenotypic and genetic heterogeneity. It is shown that the ordered-subset analysis (OSA) technique reduces heterogeneity, increases statistical power for detecting linkage and helps to define the most informative data set for follow-up analysis. We applied OSA to the family data from the North American Rheumatoid Arthritis Consortium study as part of the Genetic Analysis Workshop 15 (GAW15). We have incorporated two continuous covariates, 'age of onset' and 'anti-CCP level' (anti-cyclic citrinullated peptide), into our genome-wide ordered-subset linkage analysis using 809 Illumina SNP markers in 5713 individuals from 606 Caucasian RA families. A statistically significant increase in nonparametric linkage (NPL) scores was observed with covariate 'age of onset' in chromosomes 4 (p = 0.000003) and 9 (p = 0.002). With the covariate 'anti-CCP level', statistically significant increases in NPL scores were observed in chromosomes 2 (p = 0.0001), 18 (p = 0.00007), and 19 (p = 0.0003). Once we identified the linked genomic region, we then attempted to identify the best plausible parametric model at that linked locus. Our results show significant improvement in evidence for linkage and demonstrate that OSA is a useful technique to detect linkage under heterogeneity.
PMCID: PMC2367502  PMID: 18466441
19.  Neo-epitopes are required for immunogenicity of the La/SS-B nuclear antigen in the context of late apoptotic cells 
Mechanisms responsible for the induction of anti-nuclear autoantibodies (ANA) following exposure of the immune system to an excess of apoptotic cells are incompletely understood. In this study, the immunogenicity of late apoptotic cells expressing heterologous or syngeneic forms of La/SS-B was investigated following subcutaneous administration to A/J mice, a non-autoimmune strain in which the La antigenic system is well-understood. Immunization of A/J mice with late apoptotic thymocytes taken from mice transgenic (Tg) for the human La (hLa) nuclear antigen resulted in the production of IgG ANA specific for human and mouse forms of La in the absence of foreign adjuvants. Preparations of phenotypically healthy cells expressing heterologous hLa were also immunogenic. However, hLa Tg late apoptotic cells accelerated and enhanced the apparent heterologous healthy cell-induced anti-La humoral response, while non-Tg late apoptotic cells did not. Subcutaneous administration of late apoptotic cells was insufficient to break existing tolerance to the hLa antigen in hLa Tg mice or to the endogenous mouse La (mLa) antigen in A/J mice immunized with syngeneic thymocytes, indicating a requirement for the presence of heterologous epitopes for anti-La ANA production. Lymph node dendritic cells (DC) but not B cells isolated from non-Tg mice injected with hLa Tg late apoptotic cells presented immunodominant T helper cell epitopes of hLa. These studies support a model in which the generation of neo-T cell epitopes is required for loss of tolerance to nuclear proteins after exposure of the healthy immune system to an excess of cells in late stages of apoptosis.
PMCID: PMC1809581  PMID: 16412047
Autoimmunity; Apoptosis; Autoantibodies; Tolerance; Mice

Results 1-19 (19)