Search tips
Search criteria

Results 1-25 (96)

Clipboard (0)

Select a Filter Below

more »
more »
Year of Publication
more »
1.  Estrogen receptor alpha deficiency modulates TLR ligand mediated PDC-TREM expression in plasmacytoid dendritic cells in lupus prone mice 
Female lupus prone NZM2410 estrogen receptor alpha (ERα) deficient mice are protected from renal disease and have prolonged survival compared to wild type (WT) littermates, however the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I interferon (IFN) drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in pre-disease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHCII+ pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of toll-like receptor (TLR) mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in pre-disease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupus like disease.
PMCID: PMC4790076  PMID: 26553076
Rodent; Dendritic Cells; Autoimmunity; Systemic Lupus Erythematosus
2.  Genetic associations of leptin-related polymorphisms with systemic lupus erythematosus 
Clinical immunology (Orlando, Fla.)  2015;161(2):157-162.
Leptin is abnormally elevated in the plasma of patients with systemic lupus erythematosus (SLE), where it is thought to promote and/or sustain pro-inflammatory responses. Whether this association could reflect an increased genetic susceptibility to develop SLE is not known, and studies of genetic associations with leptin-related polymorphisms in SLE patients have been so far inconclusive. Here we genotyped DNA samples from 15,706 SLE patients and healthy matched controls from four different ancestral groups, to correlate polymorphisms of genes of the leptin pathway to risk for SLE. It was found that although several SNPs showed weak associations, those associations did not remain significant after correction for multiple testing. These data do not support associations between defined leptin-related polymorphisms and increased susceptibility to develop SLE.
PMCID: PMC4658308  PMID: 26385092
systemic lupus erythematosus; leptin pathway; gene polymorphisms
3.  Impact of estrogen receptor deficiency on disease expression in the NZM2410 lupus prone mouse 
Clinical immunology (Orlando, Fla.)  2008;128(2):259-268.
Systemic lupus erythematosus (SLE) occurs nine times more often in females than males. The purpose of this study was to determine the impact of estrogen receptor (ER) null genotypes on disease in lupus prone NZM2410 (NZM) and MRL/lpr mice, as a method to define the role of estrogen receptor signaling in lupus. ERα deficient NZM females, but not males, had significantly prolonged survival, reduced proteinuria, renal pathology scores and serum urea nitrogen levels compared to wildtype mice, despite higher serum anti-dsDNA levels. ERα deficient MRL/lpr female, but not male, mice also had significantly less proteinuria and renal pathology scores with no effect on autoantibody levels. Deficiency of ERβ had no effect on disease in either strain or sex. Taken together, these data demonstrate a key role for ERα, but not ERβ, in the development of lupus like disease, but not autoimmunity, in female NZM and MRL/lpr mice.
PMCID: PMC4778964  PMID: 18514033
Lupus; Estrogen receptors; Renal disease; Autoimmunity
4.  Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA 
Annals of the Rheumatic Diseases  2014;75(1):242-252.
Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association.
Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR.
The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10−4, OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10−7, OR 0.71; case-only pmeta=1.9×10−4, OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR.
These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications.
PMCID: PMC4717392  PMID: 25180293
Systemic Lupus Erythematosus; Autoantibodies; Gene Polymorphism; B cells
5.  The IRF5–TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share 
Kottyan, Leah C. | Zoller, Erin E. | Bene, Jessica | Lu, Xiaoming | Kelly, Jennifer A. | Rupert, Andrew M. | Lessard, Christopher J. | Vaughn, Samuel E. | Marion, Miranda | Weirauch, Matthew T. | Namjou, Bahram | Adler, Adam | Rasmussen, Astrid | Glenn, Stuart | Montgomery, Courtney G. | Hirschfield, Gideon M. | Xie, Gang | Coltescu, Catalina | Amos, Chris | Li, He | Ice, John A. | Nath, Swapan K. | Mariette, Xavier | Bowman, Simon | Rischmueller, Maureen | Lester, Sue | Brun, Johan G. | Gøransson, Lasse G. | Harboe, Erna | Omdal, Roald | Cunninghame-Graham, Deborah S. | Vyse, Tim | Miceli-Richard, Corinne | Brennan, Michael T. | Lessard, James A. | Wahren-Herlenius, Marie | Kvarnström, Marika | Illei, Gabor G. | Witte, Torsten | Jonsson, Roland | Eriksson, Per | Nordmark, Gunnel | Ng, Wan-Fai | Anaya, Juan-Manuel | Rhodus, Nelson L. | Segal, Barbara M. | Merrill, Joan T. | James, Judith A. | Guthridge, Joel M. | Hal Scofield, R. | Alarcon-Riquelme, Marta | Bae, Sang-Cheol | Boackle, Susan A. | Criswell, Lindsey A. | Gilkeson, Gary | Kamen, Diane L. | Jacob, Chaim O. | Kimberly, Robert | Brown, Elizabeth | Edberg, Jeffrey | Alarcón, Graciela S. | Reveille, John D. | Vilá, Luis M. | Petri, Michelle | Ramsey-Goldman, Rosalind | Freedman, Barry I. | Niewold, Timothy | Stevens, Anne M. | Tsao, Betty P. | Ying, Jun | Mayes, Maureen D. | Gorlova, Olga Y. | Wakeland, Ward | Radstake, Timothy | Martin, Ezequiel | Martin, Javier | Siminovitch, Katherine | Moser Sivils, Kathy L. | Gaffney, Patrick M. | Langefeld, Carl D. | Harley, John B. | Kaufman, Kenneth M.
Human Molecular Genetics  2014;24(2):582-596.
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5–TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5–TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10−49; OR = 1.38–1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10−27–10−32, OR = 1.7–1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5–TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5–TNPO3.
PMCID: PMC4275071  PMID: 25205108
6.  Early Ovariectomy Results in Reduced Numbers of CD11c+/CD11b+ Spleen Cells and Impacts Disease Expression in Murine Lupus 
Ninety percent of those diagnosed with systemic lupus erythematosus are female, with peak incidence between the ages of 15 and 45, when women are most hormonally active. Despite significant research effort, the mechanisms underlying this sex bias remain unclear. We previously showed that a functional knockout of estrogen receptor alpha (ERα) resulted in significantly reduced renal disease and increased survival in murine lupus. Dendritic cell (DC) development, which requires both estrogen and ERα, is impacted, as is activation status and cytokine production. Since both estrogen and testosterone levels have immunomodulating effects, we presently studied the phenotype of NZM2410 lupus-prone mice following post- and prepubertal ovariectomy (OVX) ± estradiol (E2) replacement to determine the impact of hormonal status on disease expression and DC development in these mice. We observed a trend toward survival benefit in addition to decreased proteinuria and improved renal histology in the early OVX, but not late OVX- or E2-repleted WT mice. Interestingly, there was also a significant difference in splenic DC subsets by flow cytometry. Spleens from NZM mice OVX’d early had a significant decrease in proinflammatory CD11c+CD11b+ DCs (vs. unmanipulated WTs, late OVX- and E2-repleted mice). These early OVX’d animals also had a significant increase in tolerogenic CD11c+CD8a+ DCs vs. WT. These data join a growing body of evidence that supports a role for hormone modulation of DCs that likely impacts the penetrance and severity of autoimmune diseases, such as lupus.
PMCID: PMC4753299  PMID: 26913030
systemic lupus erythematosus; mouse models; estrogen; ovariectomy; dendritic cells
7.  A critical role for the transcription factor Fli-1 in lupus development by regulating expression of Interleukin 6 
The Fli-1 transcription factor is implicated in the pathogenesis of systemic lupus erythematosus (SLE) in both human patients and animal models. Dysregulation of interleukin 6 (IL-6) is also associated with SLE. We investigated whether Fli-1 directly regulates the expression of IL-6.
Sera were collected from wild-type and Fli-1 heterozygous (Fli-1+/−) MRL/lpr mice and the concentration of IL-6 was measured by ELISA. Expression of IL-6 in the kidney was measured by real-time PCR. T cells were isolated from wild-type and Fli-1+/− MRL/lpr mice and stimulated with CD3/CD28 beads, and the concentration of IL-6 in the supernatants was measured by ELISA. MS1 endothelial cells were transfected with Fli-1 and control siRNA, and the production of IL-6 was compared after lipopolysaccharides (LPS) stimulation. A chromatin immunoprecipitation (ChIP) assay was performed to determine whether Fli-1binds to the IL-6 promoter region. Transient transfections with the NIH 3T3 cell line were performed to study if Fli-1 regulates the expression of IL-6.
Fli-1+/− MRL/lpr mice had significantly decreased IL-6 in sera and reduced expression of IL-6 in kidneys compared to wild-type littermates. The T cells isolated from Fli-1+/− MRL/lpr mice produced less IL-6. Inhibiting the expression of Fli-1 in endothelial cells resulted in reduced production of IL-6. The ChIP assay revealed direct binding of Fli-1 to three regions within the IL-6 promoter. Fli-1 activated transcription from the IL-6 promoter in a dose-dependent manner.
Fli-1 directly regulates IL-6 expression as one of possible mechanisms for the protective effect in lupus of decreased Fli-1 expression.
PMCID: PMC4245454  PMID: 25155007
8.  Differential efficacy of human mesenchymal stem cells based on source of origin 
Mesenchymal stem cells (MSCs) are useful in tissue repair, but also possess immunomodulatory properties. Murine and uncontrolled human trials suggest efficacy of MSCs in treating lupus. Autologous cells are preferable, however, recent studies suggest that lupus derived MSCs lack efficacy in treating disease. Thus, the optimum derivation of MSCs for use in lupus is unknown. It is also unknown which in vitro assays of MSC function predict in vivo efficacy. The objectives for this study were to provide insight into the optimum source of MSCs and to identify in vitro assays that predict in vivo efficacy. We derived MSCs from four umbilical cords (UC), four healthy bone marrows (HBM) and four lupus bone marrows (LBM). In diseased MRL/lpr mice, MSCs from HBM and UC significantly decreased renal disease, while LBM-MSCs only delayed disease. Current in vitro assays did not differentiate efficacy of the different MSCs. Inhibition of B cell proliferation did differentiate based on efficacy. Our results suggest that autologous MSCs from lupus patients are not effective in treating disease. Furthermore, standard in vitro assays for MSC licensing are not predictive of in vivo efficacy, while inhibiting B cell proliferation appears to differentiate effective from ineffective MSCs.
PMCID: PMC4201962  PMID: 25274529
Stem Cells; Autoimmunity; Systemic Lupus Erythematosus; Inflammation
9.  Effect of Late Modulation of Nitric Oxide Production on Murine Lupus 
MRL/MpJ-Faslpr (MRL-lpr) and New Zealand Black/White (NZB/W) mice develop spontaneous autoimmune disease characterized by autoantibody production and glomerulonephritis that progresses in parallel with increasing systemic nitric oxide (NO) production. A pre-viously published study from our laboratory indicated that oral administration of the nitric oxide synthase inhibitor NG-monomethyl-l-arginine (NMMA) before the onset of clinical disease significantly decreased renal and joint pathology in MRL-lpr mice. To characterize the effect of late modulation of NO production in murine SLE, we administered oral NMMA and/or restricted dietary arginine after disease onset in two murine models of SLE. When receiving combined NMMA and arginine restriction, MRL-lpr mice had reduced joint pathology scores and NZB/W mice had lower renal pathology scores than control mice. These results indicate that modulating NO production after the onset of disease diminishes disease severity in two models of SLE, although not as effectively as treating before disease onset.
PMCID: PMC4570564  PMID: 9073540
10.  Genetic Association of CD247 (CD3ζ) with SLE in a Large-Scale Multiethnic Study 
Genes and immunity  2015;16(2):142-150.
A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE patients and 8 077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99×10−4
PMCID: PMC4371129  PMID: 25569266
Microparticles (MPs) are membrane-bound vesicles with important physiologic effects. MPs exchange information intercellularly, with each kind of MP carrying antigens and receptors of the cells from which they originated. They are biologic effectors in inflammation, angiogenesis, vascular injury, and thrombosis. Thrombosis is generally caused by abnormalities in blood flow, blood composition, and/or properties of the vessel wall. Thrombosis is a well-described feature of cardiovascular disease and cerebrovascular disease. Accumulating evidence suggests that increased risk of thrombosis is also characteristic of autoimmune disorders and immune-mediated diseases affecting all age groups, although the older adults are most vulnerable. Current research has also implicated MPs as a source of autoantigenic nuclear material that can form immune complexes, activate the innate immune system, and may lead to autoimmunity. This review focuses on the contribution of MPs to both the pathogenesis of autoimmune diseases and, as the immune and coagulation systems are tightly linked, their role in hypercoagulability in the setting of autoimmunity in an aging population.
PMCID: PMC4535344  PMID: 25173498
microparticles; thrombosis; rheumatoid arthritis; systemic sclerosis; systemic; lupus erythematosus
Lupus Science & Medicine  2015;2(1):e000087.
This review describes eight ‘great ideas’ regarding bench-to-bedside considerations in systemic lupus erythematosus (SLE) presented at the second international LUPUS meeting in Quebec, September 2014. The topics included: correcting the impaired clearance of apoptotic fragments; optimisation of clinical trial design: the PERFECT (Pre Evaluation Reducing Frighteningly Elevated Coverable Targets) study; lipidomics and metabolomics in SLE; importance of the inflammasome; identification and treatment of asymptomatic autoimmunity: prevention of SLE; combining low doses of hydroxychloroquine and quinacrine for long-term maintenance therapy of SLE; reducing emergency room visits and the critical relevance of the autoantigen.
PMCID: PMC4493165  PMID: 26167290
Systemic Lupus Erythematosus; Inflammation; Autoimmunity; Disease Activity; Lupus Nephritis
Perfluorinated compounds, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), have been shown to alter various immune functions suggesting they are immunotoxic. This study assessed the effects of PFOS and PFOA on interleukin (IL)-2 production in the human Jurkat T-cell line and PFOS in healthy human primary T cells. Jurkat cells were stimulated with phytohemagglutinin (PHA)/phorbol myristate acetate (PMA), anti CD-3/anti CD-28, or anti CD-3, and dosed with 0, 0.05, 0.1, 0.5, 1, 5, 10, 50, 75, or 100 μg ml−1 PFOS or 0, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, or 10 μg ml−1 PFOA. Jurkat cells stimulated with PHA/PMA or anti CD-3 exhibited decreased IL-2 production beginning at 50 μg PFOS ml−1 and 5 μg PFOS ml−1 respectively, but stimulation with anti-CD3/anti-CD28 resulted in no changes compared with the control. Addition of the PPAR-alpha antagonist GW6471 to PFOS-dosed cells stimulated with PHA/PMA resulted in decreases in IL-2 production starting at 50 μg PFOS ml−1, which suggests PFOS affected T-cell IL-2 production via PPAR-alpha-independent mechanisms. Exposure to PFOA, PFOA + GW6471, or PFOS + PFOA in Jurkat cells resulted in no significant differences in IL-2 production. In vitro dosing studies using healthy primary human CD4+ T cells were consistent with the Jurkat results. These data demonstrated that PFOA did not impact IL-2 production, but PFOS suppressed IL-2 production in both a human cell line and human primary cells at dose levels within the high end of the human exposure range. A decrease in IL-2 production is characteristic of autoimmune diseases such as systemic lupus erythematosus and should be further investigated.
PMCID: PMC4305032  PMID: 25056757
PFOS; PFOA; IL-2 production; immunology; ppar-alpha; perfluorinated compounds; cytokine; human T cells; in vitro; immunosuppression
Lupus  2014;23(4):360-369.
To examine whether smoking is associated with autoantibody production in systemic lupus erythematosus (SLE) patients, unaffected first-degree relatives (FDR) of individuals with SLE - a group at increased risk of developing SLE, or unaffected, unrelated controls.
Detailed demographic, environmental, clinical, and therapeutic information was collected by questionnaire on 1,242 SLE patients, 981 FDRs, and 946 controls in the Lupus Family Registry and Repository; a blood sample was obtained. All sera were tested for multiple lupus autoantibodies by immunofluorescence and luminex bead-based assays. Generalized estimating equations, adjusting for age, gender, and ethnicity and accounting for correlation within families, were used to assess smoking status with the dichotomous outcome variables of positivity for SLE status, positivity of ANA by immunofluorescence (≥ 1:120), positivity for ≥ 1 autoantibody by the luminex assay, and positivity for each of the 11 autoantibodies.
Current smoking was associated with being positive for ≥ 1 autoantibody (excluding ANA) (adjusted OR=1.53, 95% CI 1.04–2.24) in our subjects with SLE. No association was observed in unaffected FDRs or healthy controls. Former smoking was associated with anti-Ro/SS-A60 in our unaffected FDRs. There was an increased association with anti-nRNP A seropositivity, as well as a decreased association with anti-nRNP 68 positivity, in current smokers in SLE subjects.
No clear association between smoking status and individual autoantibodies was detected in SLE patients, unaffected FDRs, nor healthy controls within this collection. The association of smoking with SLE may therefore manifest its risk through mechanisms outside of autoantibody production, at least for the specificities tested.
PMCID: PMC3954895  PMID: 24449338
Smoking; autoantibodies; systemic lupus erythematosus
Lupus Science & Medicine  2015;2(1):e000081.
PMCID: PMC4322310  PMID: 25685366
Autoimmunity; Atherosclerosis; Systemic Lupus Erythematosus
Frontiers in Genetics  2015;5:450.
Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3′ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10−10, OR 0.81 (0.75–0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.
PMCID: PMC4288052  PMID: 25620976
lupus; PXK; fine-mapping; B cells; BCR
One of the more profound features of systemic lupus erythematosus (SLE) is that females have a 9:1 prevalence of this disease over males. Up to 80% of SLE patients have cognitive defects or affective disorders. The mechanism of CNS injury responsible for cognitive impairment is unknown. We previously showed that ERα deficiency significantly reduced renal disease and increased survival in lupus-prone mice. We hypothesized that ERα deficiency would be similarly protective in the brain, and that ERα may play a role in modulating blood-brain barrier (BBB) integrity and/or neuroinflammation in lupus-prone mice.
MRL/lpr ERα+/+ and ERαKO mice (n = 46) were ovariectomized, received 17β-estradiol pellets, and underwent radial arm water maze (WRAM) and novel object recognition (NOR) testing starting at eight weeks of age. Mice were sacrificed and brains were hemisected and processed for either immunohistochemistry, or hippocampus and parietal cortex dissection for Western blotting.
MRL/lpr ERαKO mice (n = 21) performed significantly better in WRAM testing than wild-type MRL/lpr mice (n = 25). There was a significant reduction in reference memory errors (P <0.007), working memory errors (P <0.05), and start arm errors (P <0.02) in ERαKO mice. There were significant differences in NOR testing, particularly total exploration time, with ERα deficiency normalizing behavior. No significant differences were seen in markers of tight junction, astrogliosis, or microgliosis in the hippocampus or cortex by Western blot, however, there was a significant reduction in numbers of Iba1+ activated microglia in the hippocampus of ERαKO mice, as evidenced by immunohistochemietry (IHC).
ERα deficiency provides significant protection against cognitive deficits in MRL/lpr mice as early as eight weeks of age. Additionally, the significant reduction in Iba1+ activated microglia in the MRL/lpr ERαKO mice was consistent with reduced inflammation, and may represent a biological mechanism for the cognitive improvement observed.
Electronic supplementary material
The online version of this article (doi:10.1186/s12974-014-0171-x) contains supplementary material, which is available to authorized users.
PMCID: PMC4272530  PMID: 25510908
Estrogen receptor alpha (ERα); Neuropsychiatric lupus (NP-SLE); Microglia
PLoS ONE  2014;9(12):e114589.
TLR7/8 and TLR9 signaling pathways have been extensively studied in systemic lupus erythematosus (SLE) as possible mediators of disease. Monocytes are a major source of pro-inflammatory cytokines and are understudied in SLE. In the current project, we investigated sex differences in monocyte activation and its implications in SLE disease pathogenesis.
Human blood samples from 27 healthy male controls, 32 healthy female controls, and 25 female patients with SLE matched for age and race were studied. Monocyte activation was tested by flow cytometry and ELISA, including subset proportions, CD14, CD80 and CD86 expression, the percentage of IL-6-producing monocytes, plasma levels of sCD14 and IL-6, and urine levels of creatinine.
Monocytes were significantly more activated in women compared to men and in patients with SLE compared to controls in vivo. We observed increased proportions of non-classic monocytes, decreased proportions of classic monocytes, elevated levels of plasma sCD14 as well as reduced surface expression of CD14 on monocytes comparing women to men and lupus patients to controls. Plasma levels of IL-6 were positively related to sCD14 and serum creatinine.
Monocyte activation and TLR4 responsiveness are altered in women compared to men and in patients with SLE compared to controls. These sex differences may allow persistent systemic inflammation and resultant enhanced SLE susceptibility.
PMCID: PMC4259347  PMID: 25485543
Lupus  2013;22(13):1361-1370.
Lupus nephritis (LN) is an immune complex-mediated glomerulonephritis. Proliferative LN (PLN, International Society of Nephrology and Renal Pathology Society (ISN/RPS) classes III and IV)) often leads to renal injury or failure despite traditional induction and maintenance therapy. Successful targeted therapeutic development requires insight into mediators of inflammation in PLN. Superoxide (SO) and its metabolites are mediators of the innate immune response through their ability to mediate reduction-oxidation signaling. Endothelial nitric oxide synthase (eNOS) modulates inflammatory responses in endothelial cells. We hypothesized that markers of SO production would be increased in active PLN and that SO production would be dependent on the activity of select enzymes in the renal cortex.
Patients with systemic lupus erythematosus were enrolled at the time of renal biopsy for active LN of all classes. Serum collected at baseline was analyzed by HPLC with electrochemical detection for markers of SO production (durable modifications of serum protein Tyr ultimately requiring SO as a substrate). Renal cortex from MRL/MpJ-FASlpr (MRL/lpr) mice with and without functional eNOS was analyzed during active disease for superoxide (SO) production with and without inhibitors of SO producing enzymes.
Serum protein modifications indicative of total SO production were significantly higher in patients with PLN. These markers were increased in association with more active, inflammatory PLN. Mice lacking functional eNOS had 80% higher levels of renal cortical SO during active disease, and inhibitors of nitric oxide synthase and NADPH oxidase reduced these levels by 60% and 77%, respectively.
These studies demonstrate that SO production is unique to active PLN in a NOS and NADPH oxidase-dependent fashion. These findings suggest the emulating or augmenting eNOS activity or inhibiting NADPH oxidase SO production may be targets of therapy in patients with PLN. The markers of SO production used in this study could rationally be used to select SO-modulating therapies and serve as pharmacodynamic indicators for dose titration.
PMCID: PMC3839955  PMID: 24106214
Lupus nephritis; Systemic lupus erythematosus; Nitric oxide; Endothelial nitric oxide synthase; NADPH Oxidase; Proliferative lupus nephritis; Superoxide; Oxidation-reduction; Inflammation
Lupus science & medicine  2014;1(1):e000020.
In a study of Gullah African–Americans, we compared pregnancy outcomes before and after systemic lupus erythematosus (SLE) diagnosis to controls to test whether there is a predisease state that negatively affects pregnancy outcomes.
Cases and controls reporting at least one pregnancy were included. Controls were all Gullah African-American females. We collected demographic, socioeconomic and pregnancy data. We modelled pregnancy outcome associations with case status using multiple logistic regression to calculate ORs.
After adjustment for age, years of education, medical coverage and pregnancy number, compared with controls, cases were more likely to have any adverse outcome (OR 2.35, 95% CI 1.78 to 3.10), including stillbirth (OR 4.55, 95% CI 1.53 to 13.50), spontaneous abortion (OR 2.05, 95% CI 1.40 to 3.00), preterm birth (OR 2.58, 95% CI 1.58 to 4.20), low birth weight (OR 2.64, 95% CI 1.61 to 4.34) and preeclampsia (OR 1.80, 95% CI 1.08 to 3.01). The odds of adverse pregnancy outcomes all increased after SLE diagnosis compared with before diagnosis, even after adjustment for age, years of education, pregnancy number and medical coverage.
From a large cohort of African–American women, our findings suggest there may be a predisease state that predisposes to adverse pregnancy outcomes.
PMCID: PMC4211631  PMID: 25360323
It has been shown that TLR7 and TLR9 signaling play a role in SLE pathogenesis. Our recent study revealed that estrogen receptor α knockout mice have impaired inflammatory responses to TLR3, TLR4, TLR7 and TLR9 ligand stimulation in DCs, B cells and whole spleen cells. These findings indicate that estrogen receptor mediated signaling may impact universal TLR responsiveness. Whether estrogen has a direct or indirect effect on TLR responsiveness by immune cells is not clear. There is evidence of a role of TLR4 in SLE disease pathogenesis, such as the kidney damage, the induction of CD40 and autoantibodies, the suppression of regulatory T cells, and the role of pro-inflammatory cytokines (e.g., IL-6, IL-1β, TNF-α) in SLE pathogenesis that can be induced by TLR4-mediated monocyte activation, suggesting that TLR4 and TLR4 responsiveness are also important for SLE disease. This review will focus on TLR4 responses and monocytes, which are understudied in systemic autoimmune diseases such as SLE.
PMCID: PMC4193900  PMID: 25309746
Toll-like receptor; monocytes; sex; autoimmunity; SLE
Rheumatology international  2012;33(10):2677-2681.
Sphingolipids are components of the plasma membrane whose metabolic manipulation is of interest as a potential therapeutic approach in a number of diseases. Sphingosine kinase 1 (SphK1), the major kinase that phosporylates sphingosine to sphingosine-1-phosphate (S1P), was previously shown by our group and others to modulate inflammation in murine models of inflammatory arthritis, inflammatory bowel disease and asthma. Sphingosine kinase 2’s (SphK2) impact on inflammation is less well known, as variable results were reported depending on the disease model. A specific SphK2 inhibitor inhibited inflammatory arthritis in one model, while siRNA knockdown of SphK2 worsened arthritis in another. We previously demonstrated that SphK1 deficient mice are protected against development of hTNF-α induced arthritis. To investigate the role of SphK2 in TNF-α induced arthritis, we developed SphK2 deficient hTNF-α overexpressing mice and separately treated hTNF-α mice with ABC294640, a SphK2 specific inhibitor. Our data show that genetic inhibition of SphK2 did not significantly impact the severity or progression of inflammatory arthritis, while pharmacologic inhibition of SphK2 led to significantly more severe arthritis. Compared to vehicle-treated mice, ABC294640 treated mice also had less S1P in whole blood and inflamed joint tissue, although the differences were not significant. ABC294640 treatment did not affect SphK1 activity in the inflamed joint while little SphK2 activity was detected in the joint. We conclude that the differences in the inflammatory phenotype in genetic inhibition vs. pharmacologic inhibition of SphK2 can be attributed to the amount of ABC294640 used in the experiments versus the impact of acute inhibition of SphK2 with ABC294640 vs. genetically-induced life-long SphK2 deficiency. Thus, inhibition of SphK2 appears to be proinflammatory in contrast to the clear anti-inflammatory effects of blocking SphK1. Therapies directed at this sphingosine kinase pathways will need to be specific in their targeting of sphingosine kinases.
PMCID: PMC3784643  PMID: 23011090
Sphigosine kinase 2; inflammatory arthritis; sphingolipids; TNF
SOJ immunology  2014;2(1):07.
We previously found that a maximum innate inflammatory response induced by stimulation of Toll-like receptors (TLRs) 3, 7 and 9 requires ERα, but does not require estrogen in multiple cell types from both control and lupus-prone mice. Given the estrogen-independence, we hypothesized that ERα mediates TLR signaling by tethering to, and enhancing, the activity of downstream transcription factors such as NFκB, rather than acting classically by binding EREs on target genes. To investigate the mechanism of ERα impact on TLR signaling, we utilized mice with a knock-in ERα mutant that is unable to bind ERE. After stimulation with TLR ligands, both ex vivo spleen cells and bone marrow-derived dendritic cells (BM-DCs) isolated from mutant ERα (“KIKO”) mice produced significantly less IL-6 compared with cells from wild-type (WT) littermates. These results suggest that ERα modulation of TLR signaling does indeed require ERE binding for its effect on the innate immune response.
PMCID: PMC4106444  PMID: 25061615
ERα; TLRs; DCs
Lupus Science & Medicine  2014;1(1):e000020.
In a study of Gullah African–Americans, we compared pregnancy outcomes before and after systemic lupus erythematosus (SLE) diagnosis to controls to test whether there is a predisease state that negativelyaffects pregnancy outcomes.
Cases and controls reporting at least one pregnancy were included. Controls were all Gullah African-American females. We collected demographic, socioeconomic and pregnancy data. We modelled pregnancy outcome associations with case status using multiple logistic regression to calculate ORs.
After adjustment for age, years of education, medical coverage and pregnancy number, compared with controls, cases were more likely to have any adverse outcome (OR 2.35, 95% CI 1.78 to 3.10), including stillbirth (OR 4.55, 95% CI 1.53 to 13.50), spontaneous abortion (OR 2.05, 95% CI 1.40 to 3.00), preterm birth (OR 2.58, 95% CI 1.58 to 4.20), low birth weight (OR 2.64, 95% CI 1.61 to 4.34) and preeclampsia (OR 1.80, 95% CI 1.08 to 3.01). The odds of adverse pregnancy outcomes all increased after SLE diagnosis compared with before diagnosis, even after adjustment for age, years of education, pregnancy number and medical coverage.
From a large cohort of African–American women, our findings suggest there may be a predisease state that predisposes to adverse pregnancy outcomes.
PMCID: PMC4211631  PMID: 25360323
systemic lupus erythematosus; pregnancy

Results 1-25 (96)