PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-24 (24)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
Document Types
1.  Mestizos with Systemic Lupus Erythematosus Develop Renal Disease Early while Antimalarials Retard its Appearance: Data from a Latin American Cohort 
Lupus  2013;22(9):899-907.
Objectives
To assess the predictors of time-to-lupus renal disease in Latin American patients.
Methods
SLE patients (n=1480) from GLADEL’s (Grupo Latino Americano De Estudio de Lupus) longitudinal inception cohort were studied. Endpoint was ACR renal criterion development after SLE diagnosis (prevalent cases excluded). Renal disease predictors were examined by univariable and multivariable Cox proportional hazards regression analyses. Antimalarials were considered time-dependent in alternative analyses.
Results
Of the entire cohort, 265 patients (17.9%) developed renal disease after entering the cohort. Of them, 88 (33.2%) developed persistent proteinuria, 44 (16.6%) cellular casts and 133 (50.2%) both; 233 patients (87.9%) were women; mean (± SD) age at diagnosis was 28.0 (11.9) years; 12.8% were African-Latin Americans, 52.5% Mestizos, 34.7% Caucasians (p=0.0016). Mestizo ethnicity (HR 1.61, 95% CI 1.19–2.17), hypertension (HR 3.99, 95% CI 3.02–5.26) and SLEDAI at diagnosis (HR 1.04, 95% CI 1.01–1.06) were associated with a shorter time-to-renal disease occurrence; antimalarial use (HR 0.57, 95% CI 0.43–0.77), older age at onset (HR 0.90, 95% CI 0.85–0.95, for every 5 years) and photosensitivity (HR 0.74, 95% CI 0.56–0.98) were associated with a longer time. Alternative model results were consistent with the antimalarial protective effect (HR 0.70, 95% CI 0.50–0.99).
Conclusions
Our data strongly support the fact that Mestizo patients are at increased risk of developing renal disease early while antimalarials seem to delay the appearance of this SLE manifestation. These data have important implications for the treatment of these patients regardless of their geographic location.
doi:10.1177/0961203313496339
PMCID: PMC3943422  PMID: 23857989
2.  STAT4 Associates with SLE Through Two Independent Effects that Correlate with Gene Expression and Act Additively with IRF5 to Increase Risk 
Annals of the rheumatic diseases  2008;68(11):10.1136/ard.2008.097642.
Objectives
To confirm and define the genetic association of STAT4 and systemic lupus erythematosus, investigate the possibility of correlations with differential splicing and/or expression levels, and genetic interaction with IRF5.
Methods
30 tag SNPs were genotyped in an independent set of Spanish cases and controls. SNPs surviving correction for multiple tests were genotyped in 5 new sets of cases and controls for replication. STAT4 cDNA was analyzed by 5’-RACE PCR and sequencing. Expression levels were measured by quantitative PCR.
Results
In the fine-mapping, four SNPs were significant after correction for multiple testing, with rs3821236 and rs3024866 as the strongest signals, followed by the previously associated rs7574865, and by rs1467199. Association was replicated in all cohorts. After conditional regression analyses, two major independent signals represented by SNPs rs3821236 and rs7574865, remained significant across the sets. These SNPs belong to separate haplotype blocks. High levels of STAT4 expression correlated with SNPs rs3821236, rs3024866 (both in the same haplotype block) and rs7574865 but not with other SNPs. We also detected transcription of alternative tissue-specific exons 1, indicating presence of tissue-specific promoters of potential importance in the expression of STAT4. No interaction with associated SNPs of IRF5 was observed using regression analysis.
Conclusions
These data confirm STAT4 as a susceptibility gene for SLE and suggest the presence of at least two functional variants affecting levels of STAT4. Our results also indicate that both genes STAT4 and IRF5 act additively to increase risk for SLE.
doi:10.1136/ard.2008.097642
PMCID: PMC3878433  PMID: 19019891
Association studies; systemic lupus erythematosus; STAT4 transcription factor; Interferon regulatory factor; genetic predisposition to disease
3.  Replication of the TNFSF4 (OX40L) Promoter Region Association with Systemic Lupus Erythematosus 
Genes and immunity  2008;10(3):10.1038/gene.2008.95.
The tumor necrosis factor ligand superfamily member 4 gene (TNFSF4) encodes the OX40 ligand (OX40L), a co-stimulatory molecule involved in T-cell activation. A recent study demonstrated the association ofTNFSF4 haplotypes located in the upstream region with risk for- or protection from Systemic Lupus Erythematosus (SLE) (Graham et al, 2008). In order to replicate this association, five single nucleotide polymorphisms (SNPs) tagging the previously associated haplotypes and passing the proper quality control filters were tested in 1312 cases and 1801 controls from Germany, Italy, Spain, and Argentina. The association of TNFSF4 with SLE was replicated in all the sets except Spain. There was a unique risk haplotype tagged by the minor alleles of the SNPs rs1234317 (pooled OR=1.39, p=0.0009) and rs12039904 (pooled OR=1.38, p=0.0012). We did not observe association to a single protective marker (rs844644) or haplotype as the first study reported; instead, we observed different protective haplotypes, all carrying the major alleles of both SNPs rs1234317 and rs12039904. Association analysis conditioning on the haplotypic background confirmed that these two SNPs explain the entire haplotype effect. This is the first replication study that confirms the association of genetic variation in the upstream region of TNFSF4 with susceptibility to SLE.
doi:10.1038/gene.2008.95
PMCID: PMC3867640  PMID: 19092840
Systemic lupus erythematosus; TNFSF4; OX40L; genetic association study
4.  Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression 
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
doi:10.1371/journal.pgen.1003870
PMCID: PMC3794920  PMID: 24130510
5.  The Impact of Rural Residency on the Expression and Outcome of Systemic Lupus Erythematosus: Data From a Multiethnic Latin American Cohort 
Lupus  2012;21(13):1397-1404.
Objective
To examine the role of place of residency in the expression and outcomes of SLE in a multi-ethnic Latin American cohort.
Patients and Methods
SLE patients (<2 years of diagnosis) from 34 centers constitute this cohort. Residency was dichotomized into rural and urban, cut-off: 10,000 inhabitants. Socio-demographic, clinical/laboratory, and mortality rates were compared between them using descriptive tests. The influence of place of residency on disease activity at diagnosis and renal disease was examined by multivariable regression analyses.
Results
122 (8.6%) of 1426 patients were rural residents. Their median age (onset, diagnosis) were 23.5 and 25.5 years; 85 (69.7%) patients were Mestizos, 28 (22.9%) Caucasians and 9 (7.4%) African-Latin Americans. Rural residents were more frequently younger at diagnosis, Mestizo and uninsured; they also had fewer years of education and a lower socioeconomic status, exhibited hypertension and renal disease more frequently, and had higher levels of disease activity at diagnosis; they used methotrexate, cyclophosphamide pulses, and hemodialysis more frequently than urban patients. Disease activity over time, renal damage, overall damage and the proportion of deceased patients were comparable in both, rural and urban patients.. In multivariable analyses, rural residency was associated with high levels of disease activity at diagnosis (OR 1.65, 95% CI 1.06–2.57) and renal disease occurrence (OR 1.77, 95% CI 1.00–3.11).
Conclusions
Rural residency associates with Mestizo ethnicity, lower socioeconomic status, and renal disease occurrence. It also plays a role on disease activity at diagnosis and kidney involvement but not on the other end-points examined.
doi:10.1177/0961203312458465
PMCID: PMC3758687  PMID: 22941567
6.  PTPN22 Association in Systemic Lupus Erythematosus (SLE) with Respect to Individual Ancestry and Clinical Sub-Phenotypes 
PLoS ONE  2013;8(8):e69404.
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7×10−9, OR = 1.40 (95% CI = 1.25–1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67–0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7×10−5, OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
doi:10.1371/journal.pone.0069404
PMCID: PMC3737240  PMID: 23950893
7.  Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4 
PLoS Genetics  2013;9(7):e1003554.
We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10−34, OR = 1.43[1.26–1.60]) and rs1234317-T (P = 1.16×10−28, OR = 1.38[1.24–1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait.
Author Summary
Systemic lupus erythematosus (SLE/lupus) is a complex disease in which the body's immune cells cause inflammation in one or more systems to cause the associated morbidity. Hormones, the environment and genes are all causal contributors to SLE and over the past several years the genetic component of SLE has been firmly established. Several genes which are regulators of the immune system are associated with disease risk. We have established one of these, the tumour-necrosis family superfamily member 4 (TNFSF4) gene, as a lupus susceptibility gene in Northern Europeans. A major obstacle in pinpointing the marker(s) at TNFSF4 which best explain the risk of SLE has been the strong correlation (linkage disequilibrium, LD) between adjacent markers across the TNFSF4 region in this population. To address this, we have typed polymorphisms in several populations in addition to the European groups. The mixed ancestry of these populations gives a different LD pattern than that found in Europeans, presenting a method of pinpointing the section of the TNFSF4 region which results in SLE susceptibility. The Non-European populations have allowed identification of a polymorphism likely to regulate expression of TNFSF4 to increase susceptibility to SLE.
doi:10.1371/journal.pgen.1003554
PMCID: PMC3715547  PMID: 23874208
8.  Anti-malarials exert a protective effect while Mestizo patients are at increased risk of developing SLE renal disease: data from a Latin-American cohort 
Rheumatology (Oxford, England)  2012;51(7):1293-1298.
Objective. To examine the role of ethnicity and the use of anti-malarials (protective) on lupus renal disease.
Methods. A nested case–control study (1:2 proportion, n = 265 and 530) within GLADEL's (Grupo Latino Americano De Estudio de Lupus) longitudinal inception cohort was carried out. The end-point was ACR renal criterion development after diagnosis. Cases and controls were matched for follow-up time (end-point or a comparable time, respectively). Renal disease predictors were examined by univariable and multivariable analyses. Additional analyses were done to determine if the protective effect of anti-malarials persisted after adjusting for intake-associated confounders.
Results. Of the cases, 233 (87.9%) were women; their mean (s.d.) age at diagnosis was 28.0 (11.9) years and their median (Q3–Q1 interquartile range) follow-up time for cases and controls was 8.3 months (Q3–Q1: 23.5); 56.6% of the cases and 74.3% of the controls were anti-malarial users. Mestizo ethnicity [odds ratio (OR) 1.72, 95% CI 1.19, 2.48] and hypertension (OR 2.26, 95% CI 1.38, 3.70) were independently associated with a higher risk of renal disease, whereas anti-malarial use (OR 0.39, 95% CI 0.26, 0.58), older age at disease onset (OR 0.98, 95% CI 0.96, 0.99) and female gender (OR 0.56, 95% CI 0.32, 0.99) were negatively associated with such occurrence. After adjusting for variables associated with their intake, the protective effect of anti-malarials on renal disease occurrence persisted (OR 0.38, 95% CI 0.25, 0.58).
Conclusion. Mestizo patients are at increased risk of developing renal disease, whereas anti-malarial use protects patients from such an occurrence.
doi:10.1093/rheumatology/ker514
PMCID: PMC3380245  PMID: 22389125
LN; renal disease; SLE; anti-malarials; HCQ; chloroquine; ethnicity; race; mestizo; Latin America
9.  Evaluation of TRAF6 in a Large Multi-Ancestral Lupus Cohort 
Arthritis and Rheumatism  2012;64(6):1960-1969.
Objective
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with significant immune system aberrations resulting from complex heritable genetics as well as environmental factors. TRAF6 is a candidate gene for SLE, which has a major role in several signaling pathways that are important for immunity and organ development.
Methods
Fifteen single-nucleotide polymorphisms (SNPs), across TRAF6 were evaluated in 7,490 SLE and 6,780 control subjects from different ancestries. Population-based case-control association analyses and meta-analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
Results
Evidence of associations in multiple SNPs was detected. The best overall p values were obtained for SNPs rs5030437 and rs4755453 (p=7.85×10−5 and p=4.73×10−5, respectively) without significant heterogeneity among populations (p=0.67 and p=0.50 in Q-statistic). In addition, rs540386 previously reported to be associated with RA was found to be in LD with these two SNPs (r2= 0.95) and demonstrated evidence of association with SLE in the same direction (meta-analysis p=9.15×10−4, OR=0.89, 95%CI=0.83–0.95). Thrombocytopenia improved the overall results in different populations (meta-analysis p=1.99×10−6, OR=0.57, 95%CI=0.45–0.72, for rs5030470). Finally evidence of family based association in 34 African-American pedigrees with the presence of thrombocytopenia were detected in one available SNP rs5030437 with Z score magnitude of 2.28 (p=0.02) under a dominant model.
Conclusion
Our data indicate the presence of association of TRAF6 with SLE in agreement with the previous report of association with RA. These data provide further support for the involvement of TRAF6 in the pathogenesis of autoimmunity.
doi:10.1002/art.34361
PMCID: PMC3380425  PMID: 22231568
TRAF6; polymorphism; systemic lupus erythematosus
10.  Fine Mapping of Xq28: Both MECP2 and IRAK1 Contribute to Risk for Systemic Lupus Erythematosus in Multiple Ancestral Groups 
Annals of the rheumatic diseases  2012;72(3):437-444.
Objectives
The Xq28 region containing IRAK1 and MECP2 has been identified as a risk locus for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to the strong linkage disequilibrium between IRAK1 and MECP2, it remains unclear which gene is affected by the underlying causal variant(s) conferring risk of SLE.
Methods
We fine-mapped ≥136 SNPs in a ~227kb region on Xq28, containing IRAK1, MECP2 and 7 adjacent genes (L1CAM, AVPR2, ARHGAP4, NAA10, RENBP, HCFC1 and TMEM187), for association with SLE in 15,783 case-control subjects derived from 4 different ancestral groups.
Results
Multiple SNPs showed strong association with SLE in European Americans, Asians and Hispanics at P<5×10−8 with consistent association in subjects with African ancestry. Of these, 6 SNPs located in the TMEM187-IRAK1-MECP2 region captured the underlying causal variant(s) residing in a common risk haplotype shared by all 4 ancestral groups. Among them, rs1059702 best explained the Xq28 association signals in conditional testings and exhibited the strongest P value in trans-ancestral meta-analysis (Pmeta=1.3×10−27, OR=1.43), and thus was considered to be the most-likely causal variant. The risk allele of rs1059702 results in the amino acid substitution S196F in IRAK1 and had previously been shown to increase NF-κB activity in vitro. We also found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels of MECP2, but not IRAK1, in SLE patients (P=0.0012) and healthy controls (P=0.0064).
Conclusion
These data suggest contributions of both IRAK1 and MECP2 to SLE susceptibility.
doi:10.1136/annrheumdis-2012-201851
PMCID: PMC3567234  PMID: 22904263
Systemic Lupus Erythematosus; Gene Polymorphism; Xq28; IRAK1; MECP2
11.  MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus 
PLoS Genetics  2013;9(2):e1003336.
We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
Author Summary
Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease contributed to by excessive innate immune activation involving toll-like receptors (TLRs, particularly TLR7/8/9) and type I interferon (IFN) signaling pathways. TLR7 responds against RNA–containing nuclear antigens and activates IFN-α pathway, playing a pivotal role in the development of SLE. While a genomic duplication of Tlr7 promotes lupus-like disease in the Y-linked autoimmune accelerator (Yaa) murine model, the lack of common copy number variations at TLR7 in humans led us to identify a functional single nucleotide polymorphism (SNP), rs3853839 at 3′ UTR of the TLR7 gene, associated with SLE susceptibility in Eastern Asians. In this study, we fine-mapped the TLR7-TLR8 region and confirmed rs3853839 exhibiting the strongest association with SLE in European Americans, African Americans, and Amerindian/Hispanics. Individuals carrying the risk G allele of rs3853839 exhibited increased TLR7 expression at the both mRNA and protein level and decreased transcript degradation. MicroRNA-3148 (miR-3148) downregulated the expression of non-risk allele (C) containing transcripts preferentially, suggesting a likely mechanism for increased TLR7 levels in risk-allele carriers. This trans-ancestral mapping provides evidence for the global association with SLE risk at rs3853839, which resides in a microRNA–gene regulatory site affecting TLR7 expression.
doi:10.1371/journal.pgen.1003336
PMCID: PMC3585142  PMID: 23468661
12.  Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK 
Annals of the Rheumatic Diseases  2011;71(1):136-142.
Objectives
Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis.
Methods
We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK.
Results
Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK.
As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies.
Conclusions
Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway.
doi:10.1136/annrheumdis-2011-200085
PMCID: PMC3268679  PMID: 21978998
systemic lupus erythematosus; genetics; polymorphism; B-cells; autoantibodies
13.  Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries 
Annals of the rheumatic diseases  2012;71(11):1809-1814.
Objective
Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM.
Methods
The authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed.
Results
The A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5).
Conclusion
These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE.
doi:10.1136/annrheumdis-2011-201110
PMCID: PMC3466387  PMID: 22523428
14.  Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus 
Annals of the rheumatic diseases  2011;70(10):1752-1757.
Objective
Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus.
Materials and methods
4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria.
Results
Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing.
Conclusion
Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.
doi:10.1136/ard.2011.154104
PMCID: PMC3232181  PMID: 21719445
15.  Fine Mapping and Conditional Analysis Identify a New Mutation in the Autoimmunity Susceptibility Gene BLK that Leads to Reduced Half-Life of the BLK Protein 
Annals of the Rheumatic Diseases  2012;71(7):1219-1226.
Objectives
To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in SLE.
Methods
Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 SNPs. Logistic regression analysis was done using PLINK and conditional analyses using GENABEL’s test score. Transfections of BLK constructs on HEK293 cells containing the novel mutation or the wild-type form were made to analyse their effect on protein half-life using a protein stability assay, cycloheximide and Western blot. CHiP-qPCR for NFkB binding.
Results
Fine mapping of BLK identified two independent genetic effects with functional consequences: one represented by two tightly linked associated haplotype blocks significantly enriched for NFκB-binding sites and numerous putative regulatory variants whose risk alleles correlated with low BLK mRNA levels. Binding of NFkBp50 and p65 to an associated 1.2Kb haplotype segment was confirmed. A second independent genetic effect was represented by an Ala71Thr, low-frequency missense substitution with an OR = 2.31 (95% c.i. 1.38–3.86). The 71Thr decreased BLK protein half-life.
Conclusions
Our results show that rare and common regulatory variants in BLK are involved in disease susceptibility and both, albeit independently lead to reduced levels of BLK protein.
doi:10.1136/annrheumdis-2011-200987
PMCID: PMC3375585  PMID: 22696686
systemic lupus erythematosus; autoimmunity; genetics; polymorphism; B-cells; autoantibodies; B-lymphocyte tyrosine kinase
16.  Role of MYH9 and APOL1 in African and non-African populations with Lupus Nephritis 
Genes and Immunity  2011;13(3):232-238.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and organ damage. Lupus nephritis (LN) is one of the most severe manifestations of SLE. Multiple studies reported associations between renal diseases and variants in the non-muscle myosin heavy chain 9 (MYH9) and the neighboring apolipoprotein L 1 (APOL1) genes. We evaluated 167 variants spanning MYH9 for association with LN in a multiethnic sample. The two previously identified risk variants in APOL1 were also tested for association with LN in European-Americans (EAs) (N = 579) and African-Americans (AAs) (N = 407). Multiple peaks of association exceeding a Bonferroni corrected p-value of p < 2.03 × 10−3 were observed between LN and MYH9 in EAs (N=4620), with the most pronounced association at rs2157257 (p = 4.7 × 10−4; odds ratio [OR]=1.205). A modest effect with MYH9 was also detected in Gullah (rs8136069, p = 0.0019, OR = 2.304). No association between LN and MYH9 was found in AAs, Asians, Amerindians or Hispanics. This study provides the first investigation of MYH9 in LN in non-Africans and of APOL1 in LN in any population and presents novel insight into the potential role of MYH9 in LN in EAs.
doi:10.1038/gene.2011.82
PMCID: PMC3330160  PMID: 22189356
MYH9; APOL1; lupus nephritis; systemic lupus erythematosus; multiethnic association study
17.  Argentine Population Genetic Structure: Large Variance in Amerindian Contribution 
Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies.
doi:10.1002/ajpa.20534
PMCID: PMC3142769  PMID: 17177183
ancestry informative markers; admixture; population stratification
18.  Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort 
Genes and immunity  2011;12(4):270-279.
Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors play a role. Rare mutations in the TREX1 gene, the major mammalian 3′-5′ exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurologic condition featuring an inflammatory encephalopathy known as Aicardi-Goutières syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls.
Methods
Forty single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene were evaluated in ∼8370 patients with SLE and ∼7490 control subjects. Stringent quality control procedures were applied and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case-control association analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
Results
The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (MAF >10%) revealed a relatively common risk haplotype in European SLE patients with neurologic manifestations, especially seizures, with a frequency of 58% in lupus cases compared to 45% in normal controls (p=0.0008, OR=1.73, 95% CI=1.25-2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (p=2.99E-13, OR=5.2, 95% CI=3.18-8.56).
Conclusion
Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis.
doi:10.1038/gene.2010.73
PMCID: PMC3107387  PMID: 21270825
19.  Association Between a Functional Variant Downstream of TNFAIP3 and Systemic Lupus Erythematosus 
Nature genetics  2011;43(3):253-258.
Systemic Lupus Erythematosus (SLE, OMIM 152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic resequencing in ethnically diverse populations we fully characterized the TNFAIP3 risk haplotype and isolated a novel TT>A polymorphic dinucleotide associated with SLE in subjects of European (P = 1.58 × 10−8; odds ratio (OR) = 1.70) and Korean (P = 8.33 × 10−10; OR = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex comprised of NF-κB subunits with reduced avidity. Furthermore, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE.
doi:10.1038/ng.766
PMCID: PMC3103780  PMID: 21336280
20.  Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility 
PLoS Genetics  2011;7(5):e1002079.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
doi:10.1371/journal.pgen.1002079
PMCID: PMC3102741  PMID: 21637784
21.  Validation of the Spanish, Portuguese and French Versions of the Lupus Damage Index Questionnaire: Data from North and South America, Spain and Portugal 
Lupus  2009;18(12):1033-1052.
SUMMARY
We have previously developed and validated a self-administered questionnaire, modeled after the Systemic Lupus International Collaborating Clinics Damage Index (SDI), the Lupus Damage Index Questionnaire (LDIQ), which may allow the ascertainment of this construct in Systemic Lupus Erythematosus (SLE) patients followed in the community and thus expand observations made about damage. We have now translated, back-translated and adapted the LDIQ to Spanish, Portuguese and French and applied it to patients followed at academic and non-academic centers in North and South America, Portugal and Spain while their physicians scored the SDI. A total of 887 patients (659 Spanish-, 140 Portuguese- and 80 French-speaking) and 40 physicians participated. Overall patients scored higher than their physicians (total score and all domains) for all versions of the LDIQ. Infrequent manifestations had less than optional clinimetric properties but overall agreement was over 95% for the majority of items. The larger sample size may explain the higher correlations observed among the Spanish-speaking patients. Pending minor adjustments, the LDIQ may prove to be useful in community-based studies. The relationship between the LDIQ and other outcome parameters is currently being investigated in a different patient sample.
doi:10.1177/0961203309105590
PMCID: PMC2933049  PMID: 19762375
22.  A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus 
Human Molecular Genetics  2008;18(3):569-579.
A gain-of-function R620W polymorphism in the PTPN22 gene, encoding the lymphoid tyrosine phosphatase LYP, has recently emerged as an important risk factor for human autoimmunity. Here we report that another missense substitution (R263Q) within the catalytic domain of LYP leads to reduced phosphatase activity. High-resolution structural analysis revealed the molecular basis for this loss of function. Furthermore, the Q263 variant conferred protection against human systemic lupus erythematosus, reinforcing the proposal that inhibition of LYP activity could be beneficial in human autoimmunity.
doi:10.1093/hmg/ddn363
PMCID: PMC2722189  PMID: 18981062
23.  Kallikrein genes are associated with lupus and glomerular basement membrane–specific antibody–induced nephritis in mice and humans 
Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody–induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that may be responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody–induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family, which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody–induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms, some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody–induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody–induced nephritis and lupus.
doi:10.1172/JCI36728
PMCID: PMC2662554  PMID: 19307730
24.  Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced half-life of the BLK protein 
Annals of the Rheumatic Diseases  2012;71(7):1219-1226.
Objectives
To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in systemic lupus erythematosus (SLE).
Methods
Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 single-nucleotide polymorphisms. Logistic regression analysis was done using PLINK and conditional analyses using GENABEL's test score. Transfections of BLK constructs on HEK293 cells containing the novel mutation or the wild type form were analysed for their effect on protein half-life using a protein stability assay, cycloheximide and western blot. CHiP-qPCR for detection of nuclear factor κ B (NFkB) binding.
Results
Fine mapping of BLK identified two independent genetic effects with functional consequences: one represented by two tightly linked associated haplotype blocks significantly enriched for NFκB-binding sites and numerous putative regulatory variants whose risk alleles correlated with low BLK mRNA levels. Binding of NFkBp50 and p65 to an associated 1.2 Kb haplotype segment was confirmed. A second independent genetic effect was represented by an Ala71Thr, low-frequency missense substitution with an OR=2.31 (95% CI 1.38 to 3.86). The 71Thr decreased BLK protein half-life.
Conclusions
These results show that rare and common regulatory variants in BLK are involved in disease susceptibility and both, albeit independently, lead to reduced levels of BLK protein.
doi:10.1136/annrheumdis-2011-200987
PMCID: PMC3375585  PMID: 22696686

Results 1-24 (24)