PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Monozygotic twins discordant for pediatric trigger-locked thumbs 
Hand (New York, N.Y.)  2012;7(3):320-322.
doi:10.1007/s11552-012-9415-3
PMCID: PMC3418355  PMID: 23997741
2.  Evaluation of TRAF6 in a Large Multi-Ancestral Lupus Cohort 
Arthritis and Rheumatism  2012;64(6):1960-1969.
Objective
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with significant immune system aberrations resulting from complex heritable genetics as well as environmental factors. TRAF6 is a candidate gene for SLE, which has a major role in several signaling pathways that are important for immunity and organ development.
Methods
Fifteen single-nucleotide polymorphisms (SNPs), across TRAF6 were evaluated in 7,490 SLE and 6,780 control subjects from different ancestries. Population-based case-control association analyses and meta-analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
Results
Evidence of associations in multiple SNPs was detected. The best overall p values were obtained for SNPs rs5030437 and rs4755453 (p=7.85×10−5 and p=4.73×10−5, respectively) without significant heterogeneity among populations (p=0.67 and p=0.50 in Q-statistic). In addition, rs540386 previously reported to be associated with RA was found to be in LD with these two SNPs (r2= 0.95) and demonstrated evidence of association with SLE in the same direction (meta-analysis p=9.15×10−4, OR=0.89, 95%CI=0.83–0.95). Thrombocytopenia improved the overall results in different populations (meta-analysis p=1.99×10−6, OR=0.57, 95%CI=0.45–0.72, for rs5030470). Finally evidence of family based association in 34 African-American pedigrees with the presence of thrombocytopenia were detected in one available SNP rs5030437 with Z score magnitude of 2.28 (p=0.02) under a dominant model.
Conclusion
Our data indicate the presence of association of TRAF6 with SLE in agreement with the previous report of association with RA. These data provide further support for the involvement of TRAF6 in the pathogenesis of autoimmunity.
doi:10.1002/art.34361
PMCID: PMC3380425  PMID: 22231568
TRAF6; polymorphism; systemic lupus erythematosus
3.  Fine Mapping of Xq28: Both MECP2 and IRAK1 Contribute to Risk for Systemic Lupus Erythematosus in Multiple Ancestral Groups 
Annals of the rheumatic diseases  2012;72(3):437-444.
Objectives
The Xq28 region containing IRAK1 and MECP2 has been identified as a risk locus for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to the strong linkage disequilibrium between IRAK1 and MECP2, it remains unclear which gene is affected by the underlying causal variant(s) conferring risk of SLE.
Methods
We fine-mapped ≥136 SNPs in a ~227kb region on Xq28, containing IRAK1, MECP2 and 7 adjacent genes (L1CAM, AVPR2, ARHGAP4, NAA10, RENBP, HCFC1 and TMEM187), for association with SLE in 15,783 case-control subjects derived from 4 different ancestral groups.
Results
Multiple SNPs showed strong association with SLE in European Americans, Asians and Hispanics at P<5×10−8 with consistent association in subjects with African ancestry. Of these, 6 SNPs located in the TMEM187-IRAK1-MECP2 region captured the underlying causal variant(s) residing in a common risk haplotype shared by all 4 ancestral groups. Among them, rs1059702 best explained the Xq28 association signals in conditional testings and exhibited the strongest P value in trans-ancestral meta-analysis (Pmeta=1.3×10−27, OR=1.43), and thus was considered to be the most-likely causal variant. The risk allele of rs1059702 results in the amino acid substitution S196F in IRAK1 and had previously been shown to increase NF-κB activity in vitro. We also found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels of MECP2, but not IRAK1, in SLE patients (P=0.0012) and healthy controls (P=0.0064).
Conclusion
These data suggest contributions of both IRAK1 and MECP2 to SLE susceptibility.
doi:10.1136/annrheumdis-2012-201851
PMCID: PMC3567234  PMID: 22904263
Systemic Lupus Erythematosus; Gene Polymorphism; Xq28; IRAK1; MECP2
4.  Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries 
Annals of the rheumatic diseases  2012;71(11):1809-1814.
Objective
Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM.
Methods
The authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed.
Results
The A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5).
Conclusion
These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE.
doi:10.1136/annrheumdis-2011-201110
PMCID: PMC3466387  PMID: 22523428
5.  The Lupus Family Registry and Repository 
Rheumatology (Oxford, England)  2010;50(1):47-59.
The Lupus Family Registry and Repository (LFRR) was established with the goal of assembling and distributing materials and data from families with one or more living members diagnosed with SLE, in order to address SLE genetics. In the present article, we describe the problems and solutions of the registry design and biometric data gathering; the protocols implemented to guarantee data quality and protection of participant privacy and consent; and the establishment of a local and international network of collaborators. At the same time, we illustrate how the LFRR has enabled progress in lupus genetics research, answering old scientific questions while laying out new challenges in the elucidation of the biologic mechanisms that underlie disease pathogenesis. Trained staff ascertain SLE cases, unaffected family members and population-based controls, proceeding in compliance with the relevant laws and standards; participant consent and privacy are central to the LFRR’s effort. Data, DNA, serum, plasma, peripheral blood and transformed B-cell lines are collected and stored, and subject to strict quality control and safety measures. Coded data and materials derived from the registry are available for approved scientific users. The LFRR has contributed to the discovery of most of the 37 genetic associations now known to contribute to lupus through 104 publications. The LFRR contains 2618 lupus cases from 1954 pedigrees that are being studied by 76 approved users and their collaborators. The registry includes difficult to obtain populations, such as multiplex pedigrees, minority patients and affected males, and constitutes the largest collection of lupus pedigrees in the world. The LFRR is a useful resource for the discovery and characterization of genetic associations in SLE.
doi:10.1093/rheumatology/keq302
PMCID: PMC3307518  PMID: 20864496
Systemic lupus erythematosus; Registry; Repository; Autoimmune diseases; Genetics; Heritability; Genome-wide association studies; Linkage analysis; Minorities; Women
6.  Genome-Wide Association Scan of Dupuytren's Disease 
The Journal of hand surgery  2010;35(12):2039-2045.
Purpose
Dupuytren's disease (DD) has strong genetic component that is suggested by population studies and family clustering. Genetic studies have yet to identify the gene(s) involved in DD. The purpose of this study was to identify regions of the entire genome (Chromosome 1 – 23) associated with the disease by performing a genome-wide association scan (GWAS) on DD patients and controls.
Methods
Genomic DNA (gDNA) was isolated from saliva collected from 40 unrelated DD patients and 40 unaffected controls. The genotyping was conducted using CytoSNP™ - Infinium® HD Ultra genotyping assay on the Illumina platform. The single nucleotides polymorphism (SNP) genotyping data was analyzed using both log regression and mapping by admixture linkage disequilibrium (MALD) analysis methods.
Results
The single SNP analysis revealed significant association in chromosomes 1, 3, 4, 5, 6, 11, 16, 17 and 23 regions. MALD analysis showed ancestry-associated regions in chromosomes 2, 6, 8, 11, 16 and 20, which may harbor DD susceptibility genes. Both analyses methods revealed loci association in chromosomes 6, 11 and 16.
Conclusions
Our data suggest that chromosome 6, 11 and 16 may contain the genes for DD and that multiple genes may be involved in DD. Future genetic studies on DD should focus on these areas of the genome.
doi:10.1016/j.jhsa.2010.08.008
PMCID: PMC2998563  PMID: 20971583
Dupuytren's disease; Dupuytren's disease genetics
7.  Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort 
Genes and immunity  2011;12(4):270-279.
Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors play a role. Rare mutations in the TREX1 gene, the major mammalian 3′-5′ exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurologic condition featuring an inflammatory encephalopathy known as Aicardi-Goutières syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls.
Methods
Forty single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene were evaluated in ∼8370 patients with SLE and ∼7490 control subjects. Stringent quality control procedures were applied and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case-control association analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
Results
The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (MAF >10%) revealed a relatively common risk haplotype in European SLE patients with neurologic manifestations, especially seizures, with a frequency of 58% in lupus cases compared to 45% in normal controls (p=0.0008, OR=1.73, 95% CI=1.25-2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (p=2.99E-13, OR=5.2, 95% CI=3.18-8.56).
Conclusion
Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis.
doi:10.1038/gene.2010.73
PMCID: PMC3107387  PMID: 21270825
8.  Identification of Unique MicroRNA Signature Associated with Lupus Nephritis 
PLoS ONE  2010;5(5):e10344.
MicroRNAs (miRNA) have emerged as an important new class of modulators of gene expression. In this study we investigated miRNA that are differentially expressed in lupus nephritis. Microarray technology was used to investigate differentially expressed miRNA in peripheral blood mononuclear cells (PBMCs) and Epstein-Barr Virus (EBV)-transformed cell lines obtained from lupus nephritis affected patients and unaffected controls. TaqMan-based stem-loop real-time polymerase chain reaction was used for validation. Microarray analysis of miRNA expressed in both African American (AA) and European American (EA) derived lupus nephritis samples revealed 29 and 50 differentially expressed miRNA, respectively, of 850 tested. There were 18 miRNA that were differentially expressed in both racial groups. When samples from both racial groups and different specimen types were considered, there were 5 primary miRNA that were differentially expressed. We have identified 5 miRNA; hsa-miR-371-5P, hsa-miR-423-5P, hsa-miR-638, hsa-miR-1224-3P and hsa-miR-663 that were differentially expressed in lupus nephritis across different racial groups and all specimen types tested. Hsa-miR-371-5P, hsa-miR-1224-3P and hsa-miR-423-5P, are reported here for the first time to be associated with lupus nephritis. Our work establishes EBV-transformed B cell lines as a useful model for the discovery of miRNA as biomarkers for SLE. Based on these findings, we postulate that these differentially expressed miRNA may be potential novel biomarkers for SLE as well as help elucidate pathogenic mechanisms of lupus nephritis. The investigation of miRNA profiles in SLE may lead to the discovery and development of novel methods to diagnosis, treat and prevent SLE.
doi:10.1371/journal.pone.0010344
PMCID: PMC2867940  PMID: 20485490
9.  High density genotyping of STAT4 gene reveals multiple haplotypic associations with Systemic Lupus Erythematosus in different racial groups 
Arthritis and rheumatism  2009;60(4):1085-1095.
Objective
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in SLE pathogenesis. STAT1 and STAT4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for SLE susceptibility.
Methods
Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 genes on chromosome 2 were genotyped using Illumina platform as a part of extensive association study in a large collection of 9923 lupus cases and controls from different racial groups. DNA from patients and controls was obtained from peripheral blood. Principal component analyses and population based case-control association analyses were performed and the p values, FDR q values and Odds ratios with 95% confidence intervals (95% CIs) were calculated.
Results
We observed strong genetic associations with SLE and multiple SNPs located within the STAT4 gene in different ethnicities (Fisher combined p= 7.02×10−25). In addition to strong confirmation of the association in the 3rd intronic region of this gene reported previously, we identified additional haplotypic association across STAT4 gene and in particular a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to the proximity to STAT4.
Conclusion
Our findings indicate that the STAT4 gene is likely to be a crucial component in SLE pathogenesis among multiple racial groups. The functional effects of this association, when revealed, might improve our understanding of the disease and provide new therapeutic targets.
doi:10.1002/art.24387
PMCID: PMC2776081  PMID: 19333953
10.  Differences in the Lipoprotein Distribution of Free and Liposome-Associated All-trans-Retinoic Acid in Human, Dog, and Rat Plasma Are Due to Variations in Lipoprotein Lipid and Protein Content 
The objective of the proposed study was to determine the distribution in plasma lipoprotein of free all-trans retinoic acid (ATRA) and liposomal ATRA (Atragen; composed of dimyristoyl phosphatidylcholine and soybean oil) following incubation in human, rat, and dog plasma. When ATRA and Atragen at concentrations of 1, 5, 10, and 25 μg/ml were incubated in human and rat plasma for 5, 60, and 180 min, the majority of the tretinoin was recovered in the lipoprotein-deficient plasma fraction. However, when ATRA and Atragen were incubated in dog plasma, the majority of the tretinoin (>40%) was recovered in the high-density lipoprotein (HDL) fraction. No differences in the plasma distribution between ATRA and Atragen were found. These data suggest that a significant percentage of tretinoin associates with plasma lipoproteins (primarily the HDL fraction) upon incubation in human, dog, and rat plasma. Differences between the lipoprotein lipid and protein profiles in human plasma and in dog and rat plasma influenced the plasma distribution of ATRA and Atragen. Differences in lipoprotein distribution between ATRA and Atragen were not observed, suggesting that the drug’s distribution in plasma is not influenced by its incorporation into these liposomes.
PMCID: PMC105660  PMID: 9660998
11.  Comparison of In Vitro Antifungal Activities of Free and Liposome-Encapsulated Nystatin with Those of Four Amphotericin B Formulations 
The in vitro activity of a multilamellar liposomal formulation of nystatin (Nyotran) was compared with those of free nystatin and four pharmaceutical preparations of amphotericin B. MICs for 200 isolates of two Aspergillus spp., seven Candida spp., and Cryptococcus neoformans were determined by a broth microdilution adaptation of the method recommended by the National Committee for Clinical Laboratory Standards. Minimum lethal concentrations (MLCs) of the six antifungal preparations were also determined. Both nystatin formulations possessed fungistatic and fungicidal activities against the 10 species tested. Liposomal nystatin appeared to be as active as free nystatin, with MICs and MLCs that were similar to, or lower than, those of the latter. Neither formulation of nystatin was as active as amphotericin B deoxycholate (Fungizone) or amphotericin B lipid complex (Abelcet), but both were more effective than liposomal amphotericin B (AmBisome). Our results suggest that further evaluation of liposomal nystatin is justified.
PMCID: PMC105614  PMID: 9624486
12.  Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci 
Nature genetics  2008;40(2):204-210.
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ~30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio 0.82–1.62)in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ≥9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.
doi:10.1038/ng.81
PMCID: PMC3712260  PMID: 18204446

Results 1-12 (12)