PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Plasma Nitrate/Nitrite Levels are Unchanged after Long-Term Aerobic Exercise Training in Older Adults 
Reduced nitric oxide (NO) production and bioactivity is a major contributor to endothelial dysfunction. Animal data suggests that improvements in endothelial function in response to aerobic exercise training may depend on the duration of the training program. However, no studies have examined changes in NO (as assessed by the major NO metabolites, nitrate and nitrite, NOx) after long-term training in humans. In addition, aging may impair the ability of the vasculature to increase NO with exercise. Thus, we determined whether 24 weeks of aerobic exercise training increases plasma NOx levels in sedentary older adults. We also examined changes in forearm blood flow (FBF) at rest and during reactive hyperemia as a measure of vasomotor function. Plasma NOx levels were measured in 82 men and women using a modified Griess assay. FBF was assessed in a subset of individuals (n=15) using venous occlusion plethysmography. After 24 weeks of exercise training, there were significant improvements in maximum oxygen consumption, HDL cholesterol, triglycerides, and body fat. Changes in plasma NOx levels ranged from −14.83 to +16.69 μmol/L; however, the mean change overall was not significant (−0.33±6.30 μmol/L, p=0.64). Changes in plasma NOx levels were not associated with age, gender, race, HDL cholesterol, triglycerides, body weight, body fat, or maximal oxygen consumption. There were also no significant changes in basal FBF, peak FBF, hyperemic response, total hyperemic flow, or minimum forearm vascular resistance with exercise training. In conclusion, improvements in plasma NOx levels and FBF are not evident after long-term training in older adults.
doi:10.1016/j.niox.2009.10.001
PMCID: PMC2796424  PMID: 19825427
exercise training; nitric oxide; forearm blood flow; aging
2.  The relationship of oxidative stress and cholesterol with dipping status before and after aerobic exercise training 
Blood pressure  2009;18(4):171-179.
Objective
The purpose of this study was to examine the effects of aerobic exercise training (AEXT) on dipping status in pre-hypertensive and stage-1 hypertensive individuals. A secondary purpose was to evaluate whether AEXT alters oxidative stress and endothelial biomarkers correlated to dipping status.
Methods
Twenty-three subjects underwent 24-h ambulatory blood pressure monitoring at baseline and after 6 months of AEXT. AEXT consisted of training at 70% VO2max 3 days/week for 6 months. Total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein (LDL)-cholesterol, oxidized LDL (ox-LDL), triglycerides, urinary and plasma nitric oxide end-products, superoxide dismutase and 8-iso-PGF2α were measured before and after AEXT. Statistically, ANOVA and linear regression were used.
Results
Before and after AEXT, there were no significant differences between dippers and non-dippers in any of the biomarkers except for total cholesterol following AEXT. In a sub-analysis following AEXT, 14 subjects retained their original dipping status, five subjects changed from dippers to non-dippers and four subjects changed from non-dippers to dippers. Significant differences existed between these groups in changes in total and LDL-cholesterol, ox-LDL, 8-iso-PGF2α and % Dip.
Conclusions
Changes in cholesterol levels but not oxidative stress or endothelial biomarkers were related to changes in BP variables following AEXT in dippers and non-dippers.
doi:10.1080/08037050903047160
PMCID: PMC2922419  PMID: 19544106
Aerobic exercise; ambulatory blood pressure monitoring; dipper; non-dipper; hypertension; oxidative stress
3.  Exercise Training, NADPH Oxidase p22phox Gene Polymorphisms, and Hypertension 
Introduction
Oxidative stress that is mediated through NADPH oxidase activity plays a role in the pathology of hypertension, and aerobic exercise training reduces NADPH oxidase activity. The involvement of genetic variation in the p22phox (CYBA) subunit genes in individual oxidative stress responses to aerobic exercise training has yet to be examined in Pre and Stage 1 hypertensives.
Methods
Ninety-four sedentary Pre and Stage 1 hypertensive adults underwent 6 months of aerobic exercise training at a level of 70% V̇O2max to determine whether the CYBA polymorphisms, C242T and A640G, were associated with changes in urinary 8-iso-prostaglandin F2α (8-iso-PGF2α), urinary nitric oxide metabolites (NOx), and plasma total antioxidant capacity (TAC).
Results
Demographic and subject characteristics were similar among genotype groups for both polymorphisms. At baseline, a significant (P = 0.03) difference among the C2424T genotype groups in 8-iso-PGF2α levels was detected, with the TT homozygotes having the lowest levels and the CC homozygotes having the highest levels. However, no differences were found at baseline between the A640G genotype groups. After 6 months of aerobic exercise training, there was a significant increase in V̇O2max (P < 0.0001) in the entire study population. In addition, there were significant increases in both urinary 8-iso-PGF2α (P = 0.002) and plasma TAC (P = 0.03) levels and a significant decrease in endogenous urinary NOx (P < 0.0001). Overall, aerobic exercise training elicited no significant differences among genotype groups in either CYBA variant for any of the oxidative stress variables.
Conclusions
We found that compared with CYBA polymorphisms C242T and A640G, it was aerobic exercise training that had the greatest influence on the selected biomarkers; furthermore, our results suggest that the C242T CYBA variant influences baseline levels of urinary 8-iso-PGF2α but not the aerobic exercise-induced responses.
doi:10.1249/MSS.0b013e318199cee8
PMCID: PMC2871250  PMID: 19516159
OXIDATIVE STRESS; AEROBIC EXERCISE; CYBA GENE; NITRIC OXIDE; ISOPROSTANES

Results 1-3 (3)