PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Response Inhibition during Cue Reactivity in Problem Gamblers: An fMRI Study 
PLoS ONE  2012;7(3):e30909.
Disinhibition over drug use, enhanced salience of drug use and decreased salience of natural reinforcers are thought to play an important role substance dependence. Whether this is also true for pathological gambling is unclear. To understand the effects of affective stimuli on response inhibition in problem gamblers (PRGs), we designed an affective Go/Nogo to examine the interaction between response inhibition and salience attribution in 16 PRGs and 15 healthy controls (HCs).
Four affective blocks were presented with Go trials containing neutral, gamble, positive or negative affective pictures. The No-Go trials in these blocks contained neutral pictures. Outcomes of interest included percentage of impulsive errors and mean reaction times in the different blocks. Brain activity related to No-Go trials was assessed to measure response inhibition in the various affective conditions and brain activity related to Go trials was assessed to measure salience attribution.
PRGs made fewer errors during gamble and positive trials than HCs, but were slower during all trials types. Compared to HCs, PRGs activated the dorsolateral prefrontal cortex, anterior cingulate and ventral striatum to a greater extent while viewing gamble pictures. The dorsal lateral and inferior frontal cortex were more activated in PRGs than in HCs while viewing positive and negative pictures. During neutral inhibition, PRGs were slower but similar in accuracy to HCs, and showed more dorsolateral prefrontal and anterior cingulate cortex activity. In contrast, during gamble and positive pictures PRGs performed better than HCs, and showed lower activation of the dorsolateral and anterior cingulate cortex.
This study shows that gambling-related stimuli are more salient for PRGs than for HCs. PRGs seem to rely on compensatory brain activity to achieve similar performance during neutral response inhibition. A gambling-related or positive context appears to facilitate response inhibition as indicated by lower brain activity and fewer behavioural errors in PRGs.
doi:10.1371/journal.pone.0030909
PMCID: PMC3316530  PMID: 22479305
2.  Striatal Dopamine and the Interface between Motivation and Cognition 
Brain dopamine has long been known to be implicated in the domains of appetitive motivation and cognition. Recent work indicates that dopamine also plays a role in the interaction between appetitive motivation and cognition. Here we review this work. Animal work has revealed an arrangement of spiraling connections between the midbrain and the striatum that subserves a mechanism by which dopamine can direct information flow from ventromedial to more dorsal regions in the striatum. In line with current knowledge about dopamine's effects on cognition, we hypothesize that these striato-nigro-striatal connections provide the basis for functionally specific effects of appetitive motivation on cognition. One implication of this hypothesis is that appetitive motivation can induce cognitive improvement or impairment depending on task demands.
doi:10.3389/fpsyg.2011.00163
PMCID: PMC3139101  PMID: 21808629
dopamine; motivation; cognition; striatum; flexibility; prefrontal cortex; reward; Parkinson's disease
3.  Human cognitive flexibility depends on dopamine D2 receptor signaling 
Psychopharmacology  2011;218(3):567-578.
Rationale
Accumulating evidence indicates that the cognitive effects of dopamine depend on the subtype of dopamine receptor that is activated. In particular, recent work with animals as well as current theorizing has suggested that cognitive flexibility depends on dopamine D2 receptor signaling. However, there is no evidence for similar mechanisms in humans.
Objectives
We aim to demonstrate that optimal dopamine D2 receptor signaling is critical for human cognitive flexibility.
Methods
To this end, a pharmacological pretreatment design was employed. This enabled us to investigate whether effects of the dopamine receptor agonist bromocriptine on task-set switching were abolished by pretreatment with the D2 receptor antagonist sulpiride. To account for individual (genetic) differences in baseline levels of dopamine, we made use of a common variable number of tandem repeat (VNTR) polymorphism in the 3′-untranslated region of the dopamine transporter gene, DAT1.
Results
Bromocriptine improved cognitive flexibility relative to placebo, but only in subjects with genetically determined low levels of dopamine (n = 27). This beneficial effect of bromocriptine on cognitive flexibility was blocked by pretreatment with the selective dopamine D2 receptor antagonist sulpiride (n = 14).
Conclusions
These results provide strong evidence in favor of the hypothesis that human cognitive flexibility implicates dopamine D2 receptor signaling.
Electronic supplementary material
The online version of this article (doi:10.1007/s00213-011-2340-2) contains supplementary material, which is available to authorized users.
doi:10.1007/s00213-011-2340-2
PMCID: PMC3210362  PMID: 21611724
DAT1; SLC6A3; Striatum; Set switching; Bromocriptine; Sulpiride; Cognitive flexibility

Results 1-3 (3)