Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Striatal connectivity changes following gambling wins and near-misses: Associations with gambling severity 
NeuroImage : Clinical  2014;5:232-239.
Frontostriatal circuitry is implicated in the cognitive distortions associated with gambling behaviour. ‘Near-miss’ events, where unsuccessful outcomes are proximal to a jackpot win, recruit overlapping neural circuitry with actual monetary wins. Personal control over a gamble (e.g., via choice) is also known to increase confidence in one's chances of winning (the ‘illusion of control’).
Using psychophysiological interaction (PPI) analyses, we examined changes in functional connectivity as regular gamblers and non-gambling participants played a slot-machine game that delivered wins, near-misses and full-misses, and manipulated personal control. We focussed on connectivity with striatal seed regions, and associations with gambling severity, using voxel-wise regression.
For the interaction term of near-misses (versus full-misses) by personal choice (participant-chosen versus computer-chosen), ventral striatal connectivity with the insula, bilaterally, was positively correlated with gambling severity. In addition, some effects for the contrast of wins compared to all non-wins were observed at an uncorrected (p < .001) threshold: there was an overall increase in connectivity between the striatal seeds and left orbitofrontal cortex and posterior insula, and a negative correlation for gambling severity with the connectivity between the right ventral striatal seed and left anterior cingulate cortex.
These findings corroborate the ‘non-categorical’ nature of reward processing in gambling: near-misses and full-misses are objectively identical outcomes that are processed differentially. Ventral striatal connectivity with the insula correlated positively with gambling severity in the illusion of control contrast, which could be a risk factor for the cognitive distortions and loss-chasing that are characteristic of problem gambling.
PMCID: PMC4110887  PMID: 25068112
Gambling; Connectivity; fMRI; Reward; Near-miss; Addiction
2.  Getting a grip on problem gambling: what can neuroscience tell us? 
In problem gamblers, diminished cognitive control and increased impulsivity is present compared to healthy controls. Moreover, impulsivity has been found to be a vulnerability marker for the development of pathological gambling (PG) and problem gambling (PrG) and to be a predictor of relapse. In this review, the most recent findings on functioning of the brain circuitry relating to impulsivity and cognitive control in PG and PrG are discussed. Diminished functioning of several prefrontal areas and of the anterior cingulate cortex (ACC) indicate that cognitive-control related brain circuitry functions are diminished in PG and PrG compared to healthy controls. From the available cue reactivity studies on PG and PrG, increased responsiveness towards gambling stimuli in fronto-striatal reward circuitry and brain areas related to attentional processing is present compared to healthy controls. At this point it is unresolved whether PG is associated with hyper- or hypo-activity in the reward circuitry in response to monetary cues. More research is needed to elucidate the complex interactions for reward responsivity in different stages of gambling and across different types of reward. Conflicting findings from basic neuroscience studies are integrated in the context of recent neurobiological addiction models. Neuroscience studies on the interface between cognitive control and motivational processing are discussed in light of current addiction theories.
Clinical implications: We suggest that innovation in PG therapy should focus on improvement of dysfunctional cognitive control and/or motivational functions. The implementation of novel treatment methods like neuromodulation, cognitive training and pharmacological interventions as add-on therapies to standard treatment in PG and PrG, in combination with the study of their effects on brain-behavior mechanisms could prove an important clinical step forward towards personalizing and improving treatment results in PG.
PMCID: PMC4033022  PMID: 24904328
pathological gambling; disordered gambling; reward sensitivity; impulsivity; cue reactivity; response inhibition; review; addictive behaviors
3.  Fronto-striatal dysregulation in drug addiction and pathological gambling: Consistent inconsistencies?☆ 
NeuroImage : Clinical  2013;2:385-393.
Alterations in appetitive processing are central to the major psychological theories of addiction, with differential predictions made by the reward deficiency, incentive salience, and impulsivity hypotheses. Functional MRI has become the chief means of testing these predictions, with experiments reliably highlighting disturbances at the level of the striatum, medial prefrontal cortex, and affiliated regions. However, demonstrations of hypo-reactivity and hyper-reactivity of this circuitry in drug addicted groups are reported in approximately equal measure. Similar findings are echoed in the emergent neuroimaging literature on pathological gambling, which has recently witnessed a coming of age. The first aim of this article is to consider some of the methodological aspects of these experiments that could influence the observed direction of group-level effects, including the baseline condition, trial structure and timing, and the nature of the appetitive cues (drug-related, monetary, or primary rewards). The second aim is to highlight the conceptual traction that is offered by pathological gambling, as a model of a ‘toxicity free’ addiction and an illness where tasks of monetary reinforcement afford a more direct mapping to the abused commodity. Our conclusion is that relatively subtle decisions in task design appear capable of driving group differences in fronto-striatal circuitry in entirely opposing directions, even with tasks and task variants that look ostensibly similar. Differentiation between the psychological theories of addiction will require a greater breadth of experimental designs, with more research needed on processing of primary appetitive cues, aversive processing, and in vulnerable/at-risk groups.
•We outline the current psychological theories of addiction and their predictions.•We review recent fMRI literature of substance addictions and appetitive processing.•Reasons for opposing results (hyper- vs hypo-active reward regions) are discussed.•Recent fMRI findings of appetitive processing in pathological gambling are reviewed.•Pathological gambling is suggested as a prototypical addiction for imaging research.
PMCID: PMC3777686  PMID: 24179792
Addiction; Pathological gambling; fMRI; Ventral striatum; Appetitive processing
4.  Interactions between Affective and Cognitive Processing Systems in Problematic Gamblers: A Functional Connectivity Study 
PLoS ONE  2012;7(11):e49923.
Motivational and cognitive abnormalities are frequently reported in pathological gambling. However, studies simultaneously investigating motivational and cognitive processing in problematic gamblers are lacking, limiting our understanding of the interplay between these systems in problematic gambling. Studies in non-clinical samples indicate that interactions between dorsal “executive” and ventral “affective” processing systems are necessary for adequate responses in various emotive situations.
We conducted a generalized Psycho-Physiological Interaction (gPPI) analysis to assess the influence of affective stimuli on changes in functional connectivity associated with response inhibition in 16 treatment seeking problematic gamblers (PRGs) and 15 healthy controls (HCs) using an affective Go-NoGo fMRI paradigm including neutral, gambling-related, positive and negative pictures as neutral and affective conditions.
Across groups, task performance accuracy during neutral inhibition trials was positively correlated with functional connectivity between the left caudate and the right middle frontal cortex. During inhibition in the gambling condition, only in PRGs accuracy of task performance was positively correlated with functional connectivity within sub-regions of the dorsal executive system. Group interactions showed that during neutral inhibition, HCs exhibited greater functional connectivity between the left caudate and occipital cortex than PRGs. In contrast, during inhibition in the positive condition, PRGs compared to HCs showed greater functional connectivity between the left caudate and occipital cortex. During inhibition trials in the negative condition, a stronger functional connectivity between the left caudate and the right anterior cingulate cortex in PRGs compared to HCs was present. There were no group interactions during inhibition in the gambling condition.
During gamble inhibition PRGs seem to benefit more from functional connectivity within the dorsal executive system than HCs, because task accuracy in this condition in PRGs is positively correlated with functional connectivity, although the groups show similar connectivity patterns during gamble inhibition. Greater functional connectivity between the ventral affective system and the dorsal executive system in PRGs in the affective conditions compared to HCs, suggests facilitation of the dorsal executive system when affective stimuli are present specifically in PRGs.
PMCID: PMC3509135  PMID: 23209619
5.  Response Inhibition during Cue Reactivity in Problem Gamblers: An fMRI Study 
PLoS ONE  2012;7(3):e30909.
Disinhibition over drug use, enhanced salience of drug use and decreased salience of natural reinforcers are thought to play an important role substance dependence. Whether this is also true for pathological gambling is unclear. To understand the effects of affective stimuli on response inhibition in problem gamblers (PRGs), we designed an affective Go/Nogo to examine the interaction between response inhibition and salience attribution in 16 PRGs and 15 healthy controls (HCs).
Four affective blocks were presented with Go trials containing neutral, gamble, positive or negative affective pictures. The No-Go trials in these blocks contained neutral pictures. Outcomes of interest included percentage of impulsive errors and mean reaction times in the different blocks. Brain activity related to No-Go trials was assessed to measure response inhibition in the various affective conditions and brain activity related to Go trials was assessed to measure salience attribution.
PRGs made fewer errors during gamble and positive trials than HCs, but were slower during all trials types. Compared to HCs, PRGs activated the dorsolateral prefrontal cortex, anterior cingulate and ventral striatum to a greater extent while viewing gamble pictures. The dorsal lateral and inferior frontal cortex were more activated in PRGs than in HCs while viewing positive and negative pictures. During neutral inhibition, PRGs were slower but similar in accuracy to HCs, and showed more dorsolateral prefrontal and anterior cingulate cortex activity. In contrast, during gamble and positive pictures PRGs performed better than HCs, and showed lower activation of the dorsolateral and anterior cingulate cortex.
This study shows that gambling-related stimuli are more salient for PRGs than for HCs. PRGs seem to rely on compensatory brain activity to achieve similar performance during neutral response inhibition. A gambling-related or positive context appears to facilitate response inhibition as indicated by lower brain activity and fewer behavioural errors in PRGs.
PMCID: PMC3316530  PMID: 22479305
6.  Brain Imaging Studies in Pathological Gambling 
Current Psychiatry Reports  2010;12(5):418-425.
This article reviews the neuroimaging research on pathological gambling (PG). Because of the similarities between substance dependence and PG, PG research has used paradigms similar to those used in substance use disorder research, focusing on reward and punishment sensitivity, cue reactivity, impulsivity, and decision making. This review shows that PG is consistently associated with blunted mesolimbic-prefrontal cortex activation to nonspecific rewards, whereas these areas show increased activation when exposed to gambling-related stimuli in cue exposure paradigms. Very little is known, and hence more research is needed regarding the neural underpinnings of impulsivity and decision making in PG. This review concludes with a discussion regarding the challenges and new developments in the field of neurobiological gambling research and comments on their implications for the treatment of PG.
PMCID: PMC2933850  PMID: 20676945
Pathological gambling; Addiction; Neuroimaging; Neuropsychology
7.  Contingency Learning in Alcohol Dependence and Pathological Gambling: Learning and Unlearning Reward Contingencies 
Patients with alcohol dependence (AD) and pathological gambling (PG) are characterized by dysfunctional reward processing and their ability to adapt to alterations of reward contingencies is impaired. However, most neurocognitive tasks investigating reward processing involve a complex mix of elements, such as working memory, immediate and delayed rewards, and risk-taking. As a consequence, it is not clear whether contingency learning is altered in AD or PG. Therefore, the current study aimed to examine performance in a deterministic contingency learning task, investigating discrimination, reversal, and extinction learning.
Thirty-three alcohol-dependent patients (ADs), 28 pathological gamblers (PGs), and 18 healthy controls (HCs) performed a contingency learning task in which they learned stimulus–reward associations that were first reversed and later extinguished while receiving deterministic feedback throughout. Accumulated points, number of perseverative errors and trials required to reach a criterion in each learning phase were compared between groups using nonparametric Kruskal–Wallis rank-sum tests. Regression analyses were performed to compare learning curves.
PGs and ADs did not differ from HCs in discrimination learning, reversal learning, or extinction learning, on the nonparametric tests. Regression analyses, however, showed differences in the initial speed of learning: PGs were significantly faster in discrimination learning compared to ADs, and both PGs and ADs learned slower than HCs in the reversal learning and extinction phases of the task.
Learning rates for reversal and extinction were slower for the alcohol-dependent group and PG group compared to HCs, suggesting that reversing and extinguishing learned contingencies require more effort in ADs and PGs. This implicates a diminished flexibility to overcome previously learned contingencies.
PMCID: PMC4171748  PMID: 24821534
Reversal Learning; Extinction Learning; Alcohol Dependence; Pathological Gambling; Orbitofrontal Cortex

Results 1-7 (7)