Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Characterization of the Effects of Reuptake and Hydrolysis Inhibition on Interstitial Endocannabinoid Levels in the Brain: An in Vivo Microdialysis Study 
ACS Chemical Neuroscience  2012;3(5):407-417.
The present experiments employed in vivo microdialysis to characterize the effects of commonly used endocannabinoid clearance inhibitors on basal and depolarization-induced alterations in interstitial endocannabinoid levels in the nucleus accumbens of rat brain. Compounds targeting the putative endocannabinoid transporter and hydrolytic enzymes (FAAH and MAGL) were compared. The transporter inhibitor AM404 modestly enhanced depolarization-induced increases in 2-arachidonoyl glycerol (2-AG) levels but did not alter levels of N-arachidonoyl-ethanolamide (anandamide, AEA). The transport inhibitor UCM707 did not alter dialysate levels of either endocannabinoid. The FAAH inhibitors URB597 and PF-3845 robustly increased AEA levels during depolarization without altering 2-AG levels. The MAGL inhibitor URB602 significantly enhanced depolarization-induced increases in 2-AG, but did not alter AEA levels. In contrast, the MAGL inhibitor JZL184 did not alter 2-AG or AEA levels under any condition tested. Finally, the dual FAAH/MAGL inhibitor JZL195 significantly enhanced depolarization-induced increases in both AEA and 2-AG levels. In contrast to the present observations in rats, prior work in mice has demonstrated a robust JZL184-induced enhancement of depolarization-induced increases in dialysate 2-AG. Thus, to further investigate species differences, additional tests with JZL184, PF-3845, and JZL195 were performed in mice. Consistent with prior reports, JZL184 significantly enhanced depolarization-induced increases in 2-AG without altering AEA levels. PF-3845 and JZL195 produced profiles in mouse dialysates comparable to those observed in rats. These findings confirm that interstitial endocannabinoid levels in the brain can be selectively manipulated by endocannabinoid clearance inhibitors. While PF-3845 and JZL195 produce similar effects in both rats and mice, substantial species differences in JZL184 efficacy are evident, which is consistent with previous studies.
PMCID: PMC3382459  PMID: 22860210
Endocannabinoid transporter; FAAH; in vivo microdialysis; MAGL; nucleus accumbens; endogenous cannabinoid system
2.  Adolescent nicotine exposure transiently increases high-affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex 
Adolescence is a critical developmental period during which most adult smokers initiate their habit. Adolescents are more vulnerable than adults to nicotine’s long-term effects on addictive and cognitive behavior. We investigated whether adolescent nicotine exposure in rats modifies expression of nicotinic acetylcholine receptors (nAChRs) in medial prefrontal cortex (mPFC) in the short and/or long term, and whether this has functional consequences. Using receptor binding studies followed by immunoprecipitation of nAChR subunits, we showed that adolescent nicotine exposure, as compared with saline, caused an increase in mPFC nAChRs containing α4 or β2 subunits (24 and 18%, respectively) 24 h after the last injection. Nicotine exposure in adulthood had no such effect. This increase was transient and was not observed 5 wk following either adolescent or adult nicotine exposure. In line with increased nAChRs expression 1 d after adolescent nicotine exposure, we observed a 34% increase in amplitude of nicotine-induced spontaneous inhibitory postsynaptic currents in layer II/III mPFC pyramidal neurons. These effects were transient and specific, and observed only acutely after adolescent nicotine exposure, but not after 5 wk, and no changes were observed in adult-exposed animals. The acute nicotine-induced increase in α4β2-containing receptors in adolescents interferes with the normal developmental decrease (37%) of these receptors from early adolescence (postnatal day 34) to adulthood (postnatal day 104) in the mPFC. Together, this suggests that these receptors play a role in mediating the acute rewarding effects of nicotine and may underlie the increased sensitivity of adolescents to nicotine.
PMCID: PMC3558741  PMID: 22308197
neurophysiology; membrane expression; immunoprecipitation; epibatidine binding; IPSC amplitude; pyramidal neurons
3.  On the Role of Cannabinoid CB1- and μ-Opioid Receptors in Motor Impulsivity 
Previous studies using a rat 5-choice serial reaction time task have established a critical role for dopamine D2 receptors in regulating increments in motor impulsivity induced by acute administration of the psychostimulant drugs amphetamine and nicotine. Here we investigated whether cannabinoid CB1 and/or μ-opioid receptors are involved in nicotine-induced impulsivity, given recent findings indicating that both receptor systems mediate amphetamine-induced motor impulsivity. Results showed that the cannabinoid CB1 receptor antagonist SR141716A, but not the opioid receptor antagonist naloxone, reduced nicotine-induced premature responding, indicating that nicotine-induced motor impulsivity is cannabinoid, but not opioid receptor-dependent. In contrast, SR141716A did not affect impulsivity following a challenge with the dopamine transporter inhibitor GBR 12909, a form of drug-induced impulsivity that was previously found to be dependent on μ-opioid receptor activation. Together, these data are consistent with the idea that the endogenous cannabinoid, dopamine, and opioid systems each play important, but distinct roles in regulating (drug-induced) motor impulsivity. The rather complex interplay between these neurotransmitter systems modulating impulsivity will be discussed in terms of the differential involvement of mesocortical and mesolimbic neurocircuitry.
PMCID: PMC3371578  PMID: 22701425
5-choice serial reaction time task; endocannabinoid system; endogenous opioid system; inhibitory response control; mesocortical dopamine system; mesolimbic dopamine system; nicotine; rat
4.  The Relationship between Impulsive Choice and Impulsive Action: A Cross-Species Translational Study 
PLoS ONE  2012;7(5):e36781.
Maladaptive impulsivity is a core symptom in various psychiatric disorders. However, there is only limited evidence available on whether different measures of impulsivity represent largely unrelated aspects or a unitary construct. In a cross-species translational study, thirty rats were trained in impulsive choice (delayed reward task) and impulsive action (five-choice serial reaction time task) paradigms. The correlation between those measures was assessed during baseline performance and after pharmacological manipulations with the psychostimulant amphetamine and the norepinephrine reuptake inhibitor atomoxetine. In parallel, to validate the animal data, 101 human subjects performed analogous measures of impulsive choice (delay discounting task, DDT) and impulsive action (immediate and delayed memory task, IMT/DMT). Moreover, all subjects completed the Stop Signal Task (SST, as an additional measure of impulsive action) and filled out the Barratt impulsiveness scale (BIS-11). Correlations between DDT and IMT/DMT were determined and a principal component analysis was performed on all human measures of impulsivity. In both rats and humans measures of impulsive choice and impulsive action did not correlate. In rats the within-subject pharmacological effects of amphetamine and atomoxetine did not correlate between tasks, suggesting distinct underlying neural correlates. Furthermore, in humans, principal component analysis identified three independent factors: (1) self-reported impulsivity (BIS-11); (2) impulsive action (IMT/DMT and SST); (3) impulsive choice (DDT). This is the first study directly comparing aspects of impulsivity using a cross-species translational approach. The present data reveal the non-unitary nature of impulsivity on a behavioral and pharmacological level. Collectively, this warrants a stronger focus on the relative contribution of distinct forms of impulsivity in psychopathology.
PMCID: PMC3344935  PMID: 22574225
5.  Cannabinoid CB1 Receptor Activation Mediates the Opposing Effects of Amphetamine on Impulsive Action and Impulsive Choice 
PLoS ONE  2011;6(10):e25856.
It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior.
PMCID: PMC3189229  PMID: 22016780
6.  Unidirectional relationship between heroin self-administration and impulsive decision-making in rats 
Psychopharmacology  2011;219(2):443-452.
There is growing clinical evidence for a strong relationship between drug addiction and impulsivity. However, it is not fully clear whether impulsivity is a pre-existing trait or a consequence of drug abuse. Recent observations in the animal models show that pre-existing levels of impulsivity predict cocaine and nicotine seeking. Whether such relationships also exist with respect to non-stimulant drugs is largely unknown.
We studied the relationship between impulsive choice and vulnerability to heroin taking and seeking.
Materials and methods
Rats were selected in the delayed reward task based on individual differences in impulsive choice. Subsequently, heroin intravenous self-administration behaviour was analysed, including acquisition of heroin intake, motivation, extinction and drug- and cue-induced reinstatement. Throughout the entire experiment, changes in impulsive choice were monitored weekly.
Results and discussion
High impulsivity did not predict measures of heroin taking. Moreover, high impulsive rats did not differ from low impulsive rats in extinction rates or heroin- and cue-induced reinstatement. However, both groups became more impulsive as heroin self-administration continued. During abstinence, impulsivity levels returned towards baseline (pre-heroin) levels. Our results indicate that, in contrast to psychostimulants, impulsive choice does not predict vulnerability to heroin seeking and taking.
These data implicate that different neural mechanisms may underlie the vulnerability to opiate and psychostimulant dependence. Moreover, our data suggest that elevated impulsivity levels as observed in heroin-dependent subjects are a consequence of heroin intake rather than a pre-existing vulnerability trait.
PMCID: PMC3249213  PMID: 21887498
Impulsivity; Heroin; Opiate; Addiction; Delayed reward task; Self-administration
7.  Extracellular Matrix Plasticity and GABAergic Inhibition of Prefrontal Cortex Pyramidal Cells Facilitates Relapse to Heroin Seeking 
Neuropsychopharmacology  2010;35(10):2120-2133.
Successful treatment of drug addiction is hampered by high relapse rates during periods of abstinence. Neuroadaptation in the medial prefrontal cortex (mPFC) is thought to have a crucial role in vulnerability to relapse to drug seeking, but the molecular and cellular mechanisms remain largely unknown. To identify protein changes that contribute to relapse susceptibility, we investigated synaptic membrane fractions from the mPFC of rats that underwent 21 days of forced abstinence following heroin self-administration. Quantitative proteomics revealed that long-term abstinence from heroin self-administration was associated with reduced levels of extracellular matrix (ECM) proteins. After extinction of heroin self-administration, downregulation of ECM proteins was also present in the mPFC, as well as nucleus accumbens (NAc), and these adaptations were partially restored following cue-induced reinstatement of heroin seeking. In the mPFC, these ECM proteins are condensed in the perineuronal nets that exclusively surround GABAergic interneurons, indicating that ECM adaptation might alter the activity of GABAergic interneurons. In support of this, we observed an increase in the inhibitory GABAergic synaptic inputs received by the mPFC pyramidal cells after the re-exposure to heroin-conditioned cues. Recovering levels of ECM constituents by metalloproteinase inhibitor treatment (FN-439; i.c.v.) prior to a reinstatement test attenuated subsequent heroin seeking, suggesting that the reduced synaptic ECM levels during heroin abstinence enhanced sensitivity to respond to heroin-conditioned cues. We provide evidence for a novel neuroadaptive mechanism, in which heroin self-administration-induced adaptation of the ECM increased relapse vulnerability, potentially by augmenting the responsivity of mPFC GABAergic interneurons to heroin-associated stimuli.
PMCID: PMC3055295  PMID: 20592718
addiction; reinstatement; mPFC; proteomics; synaptic plasticity; cognition and behavior; addiction & substance abuse; molecular & cellular neurobiology; plasticity; opioids; addiction; reinstatement; mPFC; proteomics; synaptic plasticity
8.  On the improvement of inhibitory response control and visuospatial attention by indirect and direct adrenoceptor agonists 
Psychopharmacology  2011;219(2):327-340.
The clinical efficacy of the monoamine and noradrenaline transporter inhibitors methylphenidate and atomoxetine in attention deficit/hyperactivity disorder implicates noradrenergic neurotransmission in modulating inhibitory response control processes. Nonetheless, it is unclear which adrenoceptor subtypes are involved in these effects.
The present study aimed at investigating the effects of adrenoceptor agonists on inhibitory response control as assessed in the rodent 5-choice serial reaction time task, a widely used translational model to measure this executive cognitive function.
Consistent with the previous reported effects of atomoxetine, the noradrenaline transporter inhibitor desipramine improved inhibitory response control, albeit the effect size was smaller compared to that of atomoxetine. Methylphenidate exerted a bimodal effect on inhibitory response control. Interestingly, the preferential β2-adrenoceptor agonist clenbuterol improved inhibitory response control. Moreover, clenbuterol improved visuospatial attention in the task, an effect that was also observed with the preferential β1-adrenoceptor agonist dobutamine. By contrast, although the preferential α1-adrenoceptor and α2-adrenoceptor agonists (phenylephrine and clonidine, respectively) and the non-selective β-adrenoceptor agonist (isoprenaline) were found to alter inhibitory response control, this was probably secondary to the simultaneous increments in response latencies and omissions observed at effective doses.
Taken together, these findings further strengthen the notion of noradrenergic modulation of inhibitory response control and attentional processes and particularly reveal the involvement of β2-adrenoceptors therein.
PMCID: PMC3249209  PMID: 21769568
Adrenoceptors; Attention; Clenbuterol; Impulsive behaviour; Noradrenaline; Rat
9.  Chronic Loss of Melanin-Concentrating Hormone Affects Motivational Aspects of Feeding in the Rat 
PLoS ONE  2011;6(5):e19600.
Current epidemic obesity levels apply great medical and financial pressure to the strenuous economy of obesity-prone cultures, and neuropeptides involved in body weight regulation are regarded as attractive targets for a possible treatment of obesity in humans. The lateral hypothalamus and the nucleus accumbens shell (AcbSh) form a hypothalamic-limbic neuropeptide feeding circuit mediated by Melanin-Concentrating Hormone (MCH). MCH promotes feeding behavior via MCH receptor-1 (MCH1R) in the AcbSh, although this relationship has not been fully characterized. Given the AcbSh mediates reinforcing properties of food, we hypothesized that MCH modulates motivational aspects of feeding.
Here we show that chronic loss of the rat MCH-precursor Pmch decreased food intake predominantly via a reduction in meal size during rat development and reduced high-fat food-reinforced operant responding in adult rats. Moreover, acute AcbSh administration of Neuropeptide-GE and Neuropeptide-EI (NEI), both additional neuropeptides derived from Pmch, or chronic intracerebroventricular infusion of NEI, did not affect feeding behavior in adult pmch+/+ or pmch−/− rats. However, acute administration of MCH to the AcbSh of adult pmch−/− rats elevated feeding behavior towards wild type levels. Finally, adult pmch−/− rats showed increased ex vivo electrically evoked dopamine release and increased limbic dopamine transporter levels, indicating that chronic loss of Pmch in the rat affects the limbic dopamine system.
Our findings support the MCH-MCH1R system as an amplifier of consummatory behavior, confirming this system as a possible target for the treatment of obesity. We propose that MCH-mediated signaling in the AcbSh positively mediates motivational aspects of feeding behavior. Thereby it provides a crucial signal by which hypothalamic neural circuits control energy balance and guide limbic brain areas to enhance motivational or incentive-related aspects of food consumption.
PMCID: PMC3088702  PMID: 21573180
10.  Varenicline attenuates cue-induced relapse to alcohol, but not nicotine seeking, while reducing inhibitory response control 
Psychopharmacology  2011;216(2):267-277.
Treatment of the most widely abused drugs, nicotine and alcohol, is hampered by high rates of relapse. Varenicline tartrate, an α4β2 nicotinic receptor partial agonist, is currently prescribed as a smoking cessation aid. However, there is emerging evidence that it may also modulate alcohol seeking and cognitive functioning in rats.
As preclinical data on alcohol taking and relapse are limited, we used a self-administration–reinstatement model to evaluate the effects of varenicline on operant responding for alcohol (12%, v/v), intravenous nicotine (40 μg/kg/inf.), sucrose (10%, w/v) and on cue-induced relapse to alcohol and nicotine seeking in rats. At the cognitive level, we assed varenicline's effects on 5-choice serial reaction time task (5-CSRTT) performance with a focus on correct responses (attention) and premature responding (impulsivity), modalities that have previously been associated with addictive behaviour.
Varenicline, at doses of 1.5 and 2.5 mg/kg, reduced alcohol and nicotine self-administration and enhanced operant responding for sucrose. At these doses, varenicline reduced cue-induced relapse to alcohol, but not nicotine seeking. In contrast, at 0.5 mg/kg, varenicline facilitated cue-induced nicotine seeking. Similar to nicotine, varenicline increased premature responding at low doses, but had no effect on any of the other behavioural parameters in the 5-CSRTT.
Our data indicate that varenicline specifically reduced responding for nicotine and alcohol, but not for natural reinforcers such as sucrose. Interestingly, varenicline strongly attenuated cue-induced relapse to alcohol seeking, but not nicotine seeking. Varenicline may therefore be a promising aid in the treatment of alcohol addiction.
PMCID: PMC3121941  PMID: 21331520
Varenicline; Self-administration; Relapse; 5-CSRTT; Nicotine; Alcohol
11.  Disruption of Long-Term Alcohol-Related Memory Reconsolidation: Role of β-Adrenoceptors and NMDA Receptors 
Disrupting reconsolidation of drug-related memories may be effective in reducing the incidence of relapse. In the current study we examine whether alcohol-related memories are prone to disruption by the β-adrenergic receptor antagonist propranolol (10 mg/kg) and the NMDA receptor antagonist MK801 (0.1 mg/kg) following their reactivation. In operant chambers, male Wistar rats were trained to self-administer a 12% alcohol solution. After 3 weeks of abstinence, the animals were placed in the self-administration cages and were re-exposed to the alcohol-associated cues for a 20-min retrieval period, immediately followed by a systemic injection of either propranolol, MK801 or saline. Rats were tested for cue-induced alcohol seeking on the following day. Retrieval session, injection and test were repeated on two further occasions at weekly intervals. Both propranolol and MK801 administration upon reactivation did not reduce alcohol seeking after the first reactivation test. However, a significant reduction of alcohol seeking was observed over three post-training tests in propranolol treated animals, and MK801 treated animals showed a strong tendency toward reduced alcohol seeking (p = 0.06). Our data indicate that reconsolidation of alcohol-related memories can be disrupted after a long post-training interval and that particularly β-adrenergic receptors may represent novel targets for pharmacotherapy of alcoholism, in combination with cue-exposure therapies.
PMCID: PMC2998860  PMID: 21152256
alcohol; β-adrenergic receptor; instrumental learning; memory reconsolidation; NMDA receptor; propranolol
12.  Acute effects of morphine on distinct forms of impulsive behavior in rats 
Psychopharmacology  2009;205(3):489-502.
Disturbances in impulse control are key features of substance abuse disorders, and conversely, many drugs of abuse are known to elicit impulsive behavior both clinically and preclinically. To date, little is known with respect to the involvement of the opioid system in impulsive behavior, although recent findings have demonstrated its involvement in delay discounting processes. The aim of the present study was to further investigate the role of the opioid system in varieties of impulsivity.
Materials and methods
To this end, groups of rats were trained in the five-choice serial reaction time task (5-CSRTT) and stop-signal task (SST), operant paradigms that provide measures of inhibitory control and response inhibition, respectively. In addition, another group of rats was trained in the delayed reward paradigm, which measures the sensitivity towards delay of gratification and as such assesses impulsive choice.
Results and discussion
Results demonstrated that morphine, a selective µ-opioid receptor agonist, primarily impaired inhibitory control in the 5-CSRTT by increasing premature responding. In addition, in keeping with previous data, morphine decreased the preference for the large over small reward in the delayed reward paradigm. The effects of morphine on measures of impulsivity in both the 5-CSRTT and delayed reward paradigm were blocked by naloxone, a µ-opioid receptor antagonist. Naloxone by itself did not alter impulsive behavior, suggesting limited involvement of an endogenous opioid tone in impulsivity. Response inhibition measured in the SST was neither altered by morphine nor naloxone, although some baseline-dependent effects of morphine on response inhibition were observed.
In conclusion, the present data demonstrate that acute challenges with morphine modulate distinct forms of impulsive behavior, thereby suggesting a role for the opioid system in impulsivity.
PMCID: PMC2712067  PMID: 19436995
Cognition; Inhibitory control; Impulsive choice; Morphine; Naloxone
13.  Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats 
Psychopharmacology  2007;195(2):175-182.
Serotonin is an important modulator of social behaviour. Individual differences in serotonergic signalling are considered to be a marker of personality that is stable throughout lifetime. While a large body of evidence indicates that central serotonin levels are inversely related to aggression and sexual behaviour in adult rats, the relationship between serotonin and social behaviour during peri-adolescence has hardly been explored.
To study the effect of acute and constitutive increases in serotonin neurotransmission on social behaviour in peri-adolescent rats.
Materials and methods
Social behaviour in peri-adolesent rats (28–35 days old) was studied after genetic ablation of the serotonin transporter, causing constitutively increased extra-neuronal serotonin levels, and after acute treatment with the serotonin reuptake inhibitor fluoxetine or the serotonin releasing agent 3,4-methylenedioxymethamphetamine (MDMA). A distinction was made between social play behaviour that mainly occurs during peri-adolescence, and non-playful social interactions that are abundant during the entire lifespan of rats.
In serotonin transporter knockout rats, social play behaviour was markedly reduced, while non-playful aspects of social interaction were unaffected. Acute treatment with fluoxetine or MDMA dose-dependently inhibited social play behaviour. MDMA also suppressed non-playful social interaction but at higher doses than those required to reduce social play. Fluoxetine did not affect non-playful social interaction.
These data show that both acute and constitutive increases in serotonergic neurotransmission reduce social play behaviour in peri-adolescent rats. Together with our previous findings of reduced aggressive and sexual behaviour in adult serotonin transporter knockout rats, these data support the notion that serotonin modulates social behaviour in a trait-like manner.
PMCID: PMC2048539  PMID: 17661017
Serotonin; Social play; Peri-adolescence; Fluoxetine; Knockout rat; MDMA
14.  Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats 
Psychopharmacology  2007;193(1):85-96.
Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking.
As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior.
Materials and methods
The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm.
In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice.
The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated.
PMCID: PMC1915592  PMID: 17387457
Cannabinoid; Cognition; Inhibitory control; Impulsive choice; Response inhibition; SR141716A; WIN55,212-2

Results 1-14 (14)