PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Reduced Frontal Brain Volume in Non-Treatment-Seeking Cocaine-Dependent Individuals: Exploring the Role of Impulsivity, Depression, and Smoking 
In cocaine-dependent patients, gray matter (GM) volume reductions have been observed in the frontal lobes that are associated with the duration of cocaine use. Studies are mostly restricted to treatment-seekers and studies in non-treatment-seeking cocaine abusers are sparse. Here, we assessed GM volume differences between 30 non-treatment-seeking cocaine-dependent individuals and 33 non-drug using controls using voxel-based morphometry. Additionally, within the group of non-treatment-seeking cocaine-dependent individuals, we explored the role of frequently co-occurring features such as trait impulsivity (Barratt Impulsivity Scale, BIS), smoking, and depressive symptoms (Beck Depression Inventory), as well as the role of cocaine use duration, on frontal GM volume. Smaller GM volumes in non-treatment-seeking cocaine-dependent individuals were observed in the left middle frontal gyrus. Moreover, within the group of cocaine users, trait impulsivity was associated with reduced GM volume in the right orbitofrontal cortex, the left precentral gyrus, and the right superior frontal gyrus, whereas no effect of smoking severity, depressive symptoms, or duration of cocaine use was observed on regional GM volumes. Our data show an important association between trait impulsivity and frontal GM volumes in cocaine-dependent individuals. In contrast to previous studies with treatment-seeking cocaine-dependent patients, no significant effects of smoking severity, depressive symptoms, or duration of cocaine use on frontal GM volume were observed. Reduced frontal GM volumes in non-treatment-seeking cocaine-dependent subjects are associated with trait impulsivity and are not associated with co-occurring nicotine dependence or depression.
doi:10.3389/fnhum.2014.00007
PMCID: PMC3894477  PMID: 24478673
cocaine dependence; drug abuse; voxel-based morphometry; frontal; depression; nicotine
2.  Disadvantageous Decision-Making as a Predictor of Drop-Out among Cocaine-Dependent Individuals in Long-Term Residential Treatment 
Background: The treatment of cocaine-dependent individuals (CDI) is substantially challenged by high drop-out rates, raising questions regarding contributing factors. Recently, a number of studies have highlighted the potential of greater focus on the clinical significance of neurocognitive impairments in treatment-seeking cocaine users. In the present study, we hypothesized that disadvantageous decision-making would be one such factor placing CDI at greater risk for treatment drop-out.
Methods: In order to explore this hypothesis, the present study contrasted baseline performance (at treatment onset) on two validated tasks of decision-making, the Iowa Gambling Task (IGT) and the Cambridge Gamble Task (CGT) in CDI who completed treatment in a residential Therapeutic Community (TC) (N = 66) and those who dropped out of TC prematurely (N = 84).
Results: Compared to treatment completers, CDI who dropped out of TC prematurely did not establish a consistent and advantageous response pattern as the IGT progressed and exhibited a poorer ability to choose the most likely outcome on the CGT. There were no group differences in betting behavior.
Conclusion: Our findings suggest that neurocognitive rehabilitation of disadvantageous decision-making may have clinical benefits in CDI admitted to long-term residential treatment programs.
doi:10.3389/fpsyt.2013.00149
PMCID: PMC3828507  PMID: 24298260
decision-making; drop-out; treatment retention; addiction treatment outcomes; cocaine dependence
3.  Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research 
Brain and Behavior  2012;2(4):499-523.
Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys)function in stimulant dependence, including cocaine, (meth-)amphetamine, ecstasy and nicotine dependence, and excessive caffeine use, comparing stimulant abusers (SAs) to nondrug using healthy controls (HCs). Despite some inconsistencies, most studies indicated altered brain activation in prefrontal cortex (PFC) and insula in response to reward and punishment, and higher limbic and anterior cingulate cortex (ACC)/PFC activation during craving and attentional bias paradigms in SAs compared with HCs. Impulsivity in SAs was associated with lower ACC and presupplementary motor area activity compared with HCs, and related to both ventral (amygdala, ventrolateral PFC, insula) and dorsal (dorsolateral PFC, dorsal ACC, posterior parietal cortex) systems. Decision making in SAs was associated with low dorsolateral PFC activity and high orbitofrontal activity. Finally, executive function in SAs was associated with lower activation in frontotemporal regions and higher activation in premotor cortex compared with HCs. It is concluded that the lower activations compared with HCs are likely to reflect the neural substrate of impaired neurocognitive functions, whereas higher activations in SAs compared with HCs are likely to reflect compensatory cognitive control mechanisms to keep behavioral task performance to a similar level as in HCs. However, before final conclusions can be drawn, additional research is needed using neuroimaging in SAs and HCs using larger and more homogeneous samples as well as more comparable task paradigms, study designs, and statistical analyses.
doi:10.1002/brb3.65
PMCID: PMC3432971  PMID: 22950052
Addiction; fMRI; functional imaging; magnetic resonance imaging; stimulant dependence; stimulants

Results 1-3 (3)