Search tips
Search criteria

Results 1-25 (46)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Probing Insect Odorant Receptors with their Cognate Ligands: Insights into Structural Features 
Biochemical and biophysical research communications  2013;435(3):10.1016/j.bbrc.2013.05.015.
Oodorant receptors (ORs) are essential for insect survival in the environment and thus are ideal molecular targets for the design of insect-inspired modern green chemicals to control populations of agricultural pests and insects of medical importance. Although insect ORs are known for more than a decade, their structural biology is still in its infancy. Here, we unravel the first structural features of ORs from the malaria mosquito, the Southern house mosquito and the silkworm moth. The second extracellular loops (ECL-2s) of their predicted structures are much longer than ECL-1s and ECL-3s. The 27 amino-acid-residue-long of the ECL-2s in mosquito and the 43 amino-acid-residue-long ECL2s in moth ORs are well-conserved. About one-third of the residues are identical, including 3-4 Pro residues. Thorough examination of well-conserved residues in these structures, by point mutation and functional assay with the Xenopus oocyte recording system, strongly suggest that these “loops” include three β-turns and some degree of folding. In the Southern house mosquito three Pro residues in ECL-2 are essential for full activation of the receptor, which is finely tuned to the oviposition attractant 3-methylindole. Additionally, the “corner residues” of prolines, including Gly, Tyr, and Leu are functionally important thus suggesting that turns are stabilized not only by backbone hydrogen bonds, but also by side-chain interactions. Examination of ECL-2s from a distant taxonomical group suggests these ECL-2 loops might be functionally important in all insect ORs. Two of the four Pro residues in the predicted ECL-2 of the bombykol receptor in the silkworm moth, BmorOR1, are essential for function. Experimental evidence indicates that these loops may not be specificity determinants, but they may form a cover to the yet-to-be-identified membrane embedded binding cavities of insect ORs.
PMCID: PMC3836372  PMID: 23673297
Extracellular loop; AgamOR10; CquiOR10; BmorOR1; 3-methylindole; bombykol
2.  Development and Assessment of Plant-Based Synthetic Odor Baits for Surveillance and Control of Malaria Vectors 
PLoS ONE  2014;9(2):e89818.
Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors.
Methodology and Principal Finding
Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide.
Conclusion and Significance
The results highlight the potential of plant-based odors and specifically linalool oxide, with or without carbon dioxide, for surveillance and mass trapping of malaria vectors.
PMCID: PMC3933673  PMID: 24587059
3.  A Proteomic Investigation of Soluble Olfactory Proteins in Anopheles gambiae 
PLoS ONE  2013;8(11):e75162.
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector.
PMCID: PMC3839933  PMID: 24282496
4.  Quasi-Double-Blind Screening of Semiochemicals for Reducing Navel Orangeworm Oviposition on Almonds 
PLoS ONE  2013;8(11):e80182.
A three-step, quasi-double-bind approach was used as a proof-of-concept study to screen twenty compounds for their ability to reduce oviposition of gravid female navel orangeworm(NOW), Ameylois transitella (Lepidoptera: Pyralidae). First, the panel of compounds, whose identity was unknown to the experimenters, was tested by electroantennogram (EAG) using antennae of two-day old gravid females as the sensing element. Of the twenty compounds tested three showed significant EAG responses. These three EAG-active compounds and a negative control were then analyzed for their ability to reduce oviposition via small-cage, two-choice laboratory assays. Two of the three compounds significantly reduced oviposition under laboratory conditions. Lastly, these two compounds were deployed in a field setting in an organic almond orchard in Arbuckle, CA using black egg traps to monitor NOW oviposition. One of these two compounds significantly reduced oviposition on black egg traps under these field conditions. Compound 9 (later identified as isophorone) showed a significant reduction in oviposition in field assays and thus has a potential as a tool to control the navel orangeworm as a pest of almonds.
PMCID: PMC3828197  PMID: 24244643
5.  First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur) 
PLoS ONE  2013;8(6):e67151.
Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority for researchers on this species.
To facilitate identifying sets of genes involved in olfaction, a normalized transcriptome of C. pallens was sequenced. A total of 104,603 contigs were obtained and assembled into 10,662 clusters and 39,734 singletons; 20,524 were annotated based on BLASTX analyses. A large number of candidate chemosensory genes were identified, including 14 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), 16 ionotropic receptors, 14 odorant receptors, and genes potentially involved in olfactory modulation. To better understand the OBPs, CSPs and cytochrome P450s, phylogenetic trees were constructed. In addition, 10 digital gene expression libraries of different tissues were constructed and gene expression profiles were compared among different tissues in males and females.
Our results provide a basis for exploring the mechanisms of chemoreception in C. pallens, as well as other insects. The evolutionary analyses in our study provide new insights into the differentiation and evolution of insect OBPs and CSPs. Our study provided large-scale sequence information for further studies in C. pallens.
PMCID: PMC3694914  PMID: 23826220
6.  Identification and Characterization of an Antennae-Specific Aldehyde Oxidase from the Navel Orangeworm 
PLoS ONE  2013;8(6):e67794.
Antennae-specific odorant-degrading enzymes (ODEs) are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes – the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs). Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW), Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13–16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13–16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.
PMCID: PMC3691121  PMID: 23826341
7.  Crystallographic Observation of pH-Induced Conformational Changes in the Amyelois transitella Pheromone-Binding Protein AtraPBP1 
PLoS ONE  2013;8(2):e53840.
The navel orangeworm, Amyelois transitella is a major agricultural pest causing large losses in a variety of tree crops. Control of this insect pest may be achieved by interfering with olfactory pathways to block detection of female-produced sex pheromones and consequently, disrupt mating. The first component of this pathway is the pheromone-binding protein AtraPBP1, which recognizes the pheromone and presents it to the odorant receptor housed in a sensory neuron of the male antennae. Release of the ligand depends on a pH-induced conformational change associated with the acidity of the membrane surface. To characterize this conformational change and to understand how pheromones bind, we have determined the high resolution crystal structures of AtraPBP1 in complex with two main constituents of the sex pheromone, i.e., (11Z,13Z)-hexadecadienal and (11Z,13Z)-hexadecadienol. Comparison with the structure of the unliganded form demonstrates a large ∼90° movement of the C-terminal helix which is observed in other pheromone- or odorant-binding proteins accompanied by an unpredicted 37° displacement of the N-terminal helix. Molecular dynamic trajectories suggest that the conformational change of the α1 helix facilitates the movement of the C-terminal helix.
PMCID: PMC3572114  PMID: 23418423
8.  Fatty Acid Solubilizer from the Oral Disk of the Blowfly 
PLoS ONE  2013;8(1):e51779.
Blowflies are economic pests of the wool industry and potential vectors for epidemics. The establishment of a pesticide-free, environmentally friendly blowfly control strategy is necessary. Blowflies must feed on meat in order to initiate the cascade of events that are involved in reproduction including juvenile hormone synthesis, vitellogenesis, and mating. During feeding blowflies regurgitate salivary lipase, which may play a role in releasing fatty acids from triglycerides that are found in food. However, long-chain fatty acids show low solubility in aqueous solutions. In order to solubilize and ingest the released hydrophobic fatty acids, the blowflies must use a solubilizer.
We applied native PAGE, Edman degradation, cDNA cloning, and RT-PCR to characterize a protein that accumulated in the oral disk of the black blowfly, Phormia regina. In situ hybridization was carried out to localize the expression at the cellular level. A fluorescence competitive binding assay was used to identify potential ligands of this protein.
A protein newly identified from P. regina (PregOBP56a) belonged to the classic odorant-binding protein (OBP) family. This gene was expressed in a cluster of cells that was localized between pseudotracheae on the oral disk, which are not accessory cells of the taste peg chemosensory sensilla that normally synthesize OBPs. At pH 7 and pH 6, PregOBP56a bound palmitic, stearic, oleic, and linoleic acids, that are mainly found in chicken meat. The binding affinity of PregOBP56a decreased at pH 5. We propose that PregOBP56a is a protein that solubilizes fatty acids during feeding and subsequently helps to deliver the fatty acids to the midgut where it may help in the process of reproduction. As such, PregOBP56a is a potential molecular target for controlling the blowfly.
PMCID: PMC3543412  PMID: 23326317
9.  Specificity of the Receptor for the Major Sex Pheromone Component in Heliothis virescens 
In a previous study, the Drosophila melanogaster OR67dGAL4;UAS system was used to functionally characterize the receptor for the major component of the sex pheromone in the tobacco budworm, Heliothis virescens Fabricius (Lepidoptera: Noctuidae), HvOR13. Electrophysiological and behavioral assays showed that transgenic flies expressing HvOR13 responded to (Z)-11-hexadecenal (Z11-16:Ald). However, tests were not performed to determine whether these flies would also respond to secondary components of the H. virescens sex pheromone. Thus, in this study the response spectrum of HvOR13 expressed in this system was examined by performing single cell recordings from odor receptor neuron in trichoid T1 sensilla on antennae of two Or67dGAL4 [1]; UAS-HvOR13 lines stimulated with Z11-16:Ald and six H. virescens secondary pheromone components. Fly courtship assays were also performed to examine the behavioral response of the Or67dGAL4[1]; UAS-HvOR13 flies to Z11-16:Ald and the secondary component Z9-14:Ald. Our combined electrophysiological and behavioral studies indicated high specificity and sensitivity of HvOR13 to Z11-16:Ald. Interestingly, a mutation leading to truncation in the HvOR13 C-terminal region affected but did not abolish pheromone receptor response to Z11-16:Ald. The findings are assessed in relationship to other HvOR13 heterologous expression studies, and the role of the C-terminal domain in receptor function is discussed. A third line expressing HvOR15 was also tested but did not respond to any of the seven pheromone components.
PMCID: PMC4015405  PMID: 24773407
Drosophila melanogaster; HvORI3; T1 sensilla
10.  Correction: Conserved Odorant-Binding Proteins from Aphids and Eavesdropping Predators 
PLoS ONE  2012;7(12):10.1371/annotation/6fb8a803-8203-429c-b0d1-4d0d995c39e9.
PMCID: PMC3553189
11.  Comparative Study of the Labial Gland Secretion in Termites (Isoptera) 
PLoS ONE  2012;7(10):e46431.
Labial glands are present in all castes and developmental stages of all termite species. In workers, their secretion contains a food-marking pheromone and digestive enzymes, while soldier secretion plays a defensive role. However, these functions were studied only in a limited set of species, and do not allow drawing general conclusions. Hence, we have investigated the chemical composition of the labial gland extracts from soldiers and workers in 15 termite species belonging to 6 families using an integrative approach based on proteomic and small-molecule profiling. We confirmed the presence of hydroquinone and cellulase in the labial glands of workers, and we identified new toxic compounds in soldiers and workers of several species. Our results highlight the dual role of labial gland secretion, i.e. the defensive role in soldiers and workers of several termite species, and the digestive function in workers.
PMCID: PMC3468581  PMID: 23071569
12.  Specificity Determinants of the Silkworm Moth Sex Pheromone 
PLoS ONE  2012;7(9):e44190.
The insect olfactory system, particularly the peripheral sensory system for sex pheromone reception in male moths, is highly selective, but specificity determinants at the receptor level are hitherto unknown. Using the Xenopus oocyte recording system, we conducted a thorough structure-activity relationship study with the sex pheromone receptor of the silkworm moth, Bombyx mori, BmorOR1. When co-expressed with the obligatory odorant receptor co-receptor (BmorOrco), BmorOR1 responded in a dose-dependent fashion to both bombykol and its related aldehyde, bombykal, but the threshold of the latter was about one order of magnitude higher. Solubilizing these ligands with a pheromone-binding protein (BmorPBP1) did not enhance selectivity. By contrast, both ligands were trapped by BmorPBP1 leading to dramatically reduced responses. The silkworm moth pheromone receptor was highly selective towards the stereochemistry of the conjugated diene, with robust response to the natural (10E,12Z)-isomer and very little or no response to the other three isomers. Shifting the conjugated diene towards the functional group or elongating the carbon chain rendered these molecules completely inactive. In contrast, an analogue shortened by two omega carbons elicited the same or slightly higher responses than bombykol. Flexibility of the saturated C1–C9 moiety is important for function as addition of a double or triple bond in position 4 led to reduced responses. The ligand is hypothesized to be accommodated by a large hydrophobic cavity within the helical bundle of transmembrane domains.
PMCID: PMC3434217  PMID: 22957053
13.  Moth Sex Pheromone Receptors and Deceitful Parapheromones 
PLoS ONE  2012;7(7):e41653.
The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.
PMCID: PMC3401280  PMID: 22911835
14.  Extrusion of the C-terminal Helix in Navel Orangeworm Moth Pheromone-Binding Protein (AtraPBP1) Controls Pheromone Binding† 
The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present a mutational analysis on a PBP from Amyelois transitella (AtraPBP1) to evaluate how the C-terminal helix in this protein controls pheromone binding as a function of pH. Pheromone binds tightly to AtraPBP1 at neutral pH, but the binding is much weaker at pH below 5. Deletion of the entire C-terminal helix (residues 129–142) causes more than 100-fold increase in pheromone binding affinity at pH 5 and only a 1.5-fold increase at pH 7. A similar pH-dependent increase in pheromone binding is also seen for the H80A/H95A double mutant that promotes extrusion of the C-terminal helix by disabling salt bridges at each end of the helix. The single mutants (H80A and H95A) also exhibit pheromone binding at pH below 5, but with ~2-fold weaker affinity. NMR and circular dichroism data demonstrate a large overall structural change in each of these mutants at pH 4.5, indicating an extrusion of the C-terminal helix that profoundly affects the overall structure of the low pH form. Our results confirm that sequestration of the C-terminal helix at low pH as seen in the recent NMR structure may serve to block pheromone binding. We propose that extrusion of these C-terminal residues at neutral pH (or by the mutations in this study) exposes a hydrophobic cleft that promotes high affinity pheromone binding.
PMCID: PMC3019287  PMID: 21130734
AtraPBP1; NMR; pheromone-binding protein; Amyelois transitella; pheromone; navel orangeworm moth; histidine protonation switch; disulfide bridge
15.  Degradation of Pheromone and Plant Volatile Components by a Same Odorant-Degrading Enzyme in the Cotton Leafworm, Spodoptera littoralis 
PLoS ONE  2011;6(12):e29147.
Odorant-Degrading Enzymes (ODEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant.
Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants.
SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.
PMCID: PMC3246455  PMID: 22216190
16.  Conserved Odorant-Binding Proteins from Aphids and Eavesdropping Predators 
PLoS ONE  2011;6(8):e23608.
The sesquiterpene (E)-ß-farnesene is the main component of the alarm pheromone system of various aphid species studied to date, including the English grain aphid, Sitobion avenae. Aphid natural enemies, such as the marmalade hoverfly Episyrphus balteatus and the multicolored Asian lady beetle Harmonia axyridis, eavesdrop on aphid chemical communication and utilize (E)-ß-farnesene as a kairomone to localize their immediate or offspring preys. These aphid-predator systems are important models to study how the olfactory systems of distant insect taxa process the same chemical signal. We postulated that odorant-binding proteins (OBPs), which are highly expressed in insect olfactory tissues and involved in the first step of odorant reception, have conserved regions involved in binding (E)-ß-farnesene.
We cloned OBP genes from the English grain aphid and two major predators of this aphid species. We then expressed these proteins and compare their binding affinities to the alarm pheromone/kairomone. By using a fluorescence reporter, we tested binding of (E)-ß-farnesene and other electrophysiologically and behaviorally active compounds, including a green leaf volatile attractant.
We found that OBPs from disparate taxa of aphids and their predators are highly conserved proteins, with apparently no orthologue genes in other insect species. Properly folded, recombinant proteins from the English grain aphid, SaveOBP3, and the marmalade hoverfly, EbalOBP3, specifically bind (E)-ß-farnesene with apparent high affinity. For the first time we have demonstrated that insect species belonging to distinct Orders have conserved OBPs, which specifically bind a common semiochemical and has no binding affinity for related compounds.
PMCID: PMC3160308  PMID: 21912599
17.  Do Leaf Cutting Ants Cut Undetected? Testing the Effect of Ant-Induced Plant Defences on Foraging Decisions in Atta colombica 
PLoS ONE  2011;6(7):e22340.
Leaf-cutting ants (LCAs) are polyphagous, yet highly selective herbivores. The factors that govern their selection of food plants, however, remain poorly understood. We hypothesized that the induction of anti-herbivore defences by attacked food plants, which are toxic to either ants or their mutualistic fungus, should significantly affect the ants' foraging behaviour. To test this “induced defence hypothesis,” we used lima bean (Phaseolus lunatus), a plant that emits many volatile organic compounds (VOCs) upon herbivore attack with known anti-fungal or ant-repellent effects. Our results provide three important insights into the foraging ecology of LCAs. First, leaf-cutting by Atta ants can induce plant defences: Lima bean plants that were repeatedly exposed to foraging workers of Atta colombica over a period of three days emitted significantly more VOCs than undamaged control plants. Second, the level to which a plant has induced its anti-herbivore defences can affect the LCAs' foraging behaviour: In dual choice bioassays, foragers discriminated control plants from plants that have been damaged mechanically or by LCAs 24 h ago. In contrast, strong induction levels of plants after treatment with the plant hormone jasmonic acid or three days of LCA feeding strongly repelled LCA foragers relative to undamaged control plants. Third, the LCA-specific mode of damaging leaves allows them to remove larger quantities of leaf material before being recognized by the plant: While leaf loss of approximately 15% due to a chewing herbivore (coccinelid beetle) was sufficient to significantly increase VOC emission levels after 24 h, the removal of even 20% of a plant's leaf area within 20 min by LCAs did not affect its VOC emission rate after 24 h. Taken together, our results support the “induced defence hypothesis” and provide first empirical evidence that the foraging behaviour of LCAs is affected by the induction of plant defence responses.
PMCID: PMC3140513  PMID: 21799831
18.  Nanogram-Scale Preparation and NMR Analysis for Mass-Limited Small Volatile Compounds 
PLoS ONE  2011;6(3):e18178.
Semiochemicals are often produced in infinitesimally small quantities, so their isolation requires large amounts of starting material, not only requiring significant effort in sample preparation, but also resulting in a complex mixture of compounds from which the bioactive compound needs to be purified and identified. Often, compounds cannot be unambiguously identified by their mass spectra alone, and NMR analysis is required for absolute chemical identification, further exacerbating the situation because NMR is relatively insensitive and requires large amounts of pure analyte, generally more than several micrograms. We developed an integrated approach for purification and NMR analysis of <1 µg of material. Collections from high performance preparative gas-chromatography are directly eluted with minimal NMR solvent into capillary NMR tubes. With this technique, 1H-NMR spectra were obtained on 50 ng of geranyl acetate, which served as a model compound, and reasonable H-H COSY NMR spectra were obtained from 250 ng of geranyl acetate. This simple off-line integration of preparative GC and NMR will facilitate the purification and chemical identification of novel volatile compounds, such as insect pheromones and other semiochemicals, which occur in minute (sub-nanogram), and often limited, quantities.
PMCID: PMC3065492  PMID: 21464906
19.  Generic Insect Repellent Detector from the Fruit Fly Drosophila melanogaster 
PLoS ONE  2011;6(3):e17705.
Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests.
Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have “generic repellent detector(s),” which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the “empty neuron” and showed to be sensitive to the three insect repellents.
For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have also identified the insect repellent-sensitive receptor, DmOr42a. This generic detector fulfils the requirements for a simplified bioassay for early screening of test insect repellents.
PMCID: PMC3059203  PMID: 21436880
20.  NMR Structure of Navel Orangeworm Moth Pheromone-Binding Protein (AtraPBP1): Implications for pH-Sensitive Pheromone Detection† 
Biochemistry  2010;49(7):1469.
The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from Amyelois transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multi-angle light scattering, and 15N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven α-helices (α1: L8-L23, α2: D27-F36, α3: R46-V62, α4: A73-M78; α5: D84-S100; α6: R107-L125; α7: M131-E141) that adopt an overall main chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108 and C97/C117, and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141 and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (α7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139 and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions.
PMCID: PMC2822879  PMID: 20088570
AtraPBP1; NMR; pheromone-binding protein; Amyelois transitella; pheromone; navel orangeworm moth; multi-angle light scattering; histidine protonation switch; disulfide bridge
21.  Chemical Analyses of Wasp-Associated Streptomyces Bacteria Reveal a Prolific Potential for Natural Products Discovery 
PLoS ONE  2011;6(2):e16763.
Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.
PMCID: PMC3043073  PMID: 21364940
22.  Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia 
PLoS ONE  2010;5(12):e15822.
In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues.
PMCID: PMC3012710  PMID: 21209898
23.  Characterization of an Antennal Carboxylesterase from the Pest Moth Spodoptera littoralis Degrading a Host Plant Odorant 
PLoS ONE  2010;5(11):e15026.
Carboxyl/cholinesterases (CCEs) are highly diversified in insects. These enzymes have a broad range of proposed functions, in neuro/developmental processes, dietary detoxification, insecticide resistance or hormone/pheromone degradation. As few functional data are available on purified or recombinant CCEs, the physiological role of most of these enzymes is unknown. Concerning their role in olfaction, only two CCEs able to metabolize sex pheromones have been functionally characterized in insects. These enzymes are only expressed in the male antennae, and secreted into the lumen of the pheromone-sensitive sensilla. CCEs able to hydrolyze other odorants than sex pheromones, such as plant volatiles, have not been identified.
In Spodoptera littoralis, a major crop pest, a diversity of antennal CCEs has been previously identified. We have employed here a combination of molecular biology, biochemistry and electrophysiology approaches to functionally characterize an intracellular CCE, SlCXE10, whose predominant expression in the olfactory sensilla suggested a role in olfaction. A recombinant protein was produced using the baculovirus system and we tested its catabolic properties towards a plant volatile and the sex pheromone components.
We showed that SlCXE10 could efficiently hydrolyze a green leaf volatile and to a lesser extent the sex pheromone components. The transcript level in male antennae was also strongly induced by exposure to this plant odorant. In antennae, SlCXE10 expression was associated with sensilla responding to the sex pheromones and to plant odours. These results suggest that a CCE-based intracellular metabolism of odorants could occur in insect antennae, in addition to the extracellular metabolism occurring within the sensillar lumen. This is the first functional characterization of an Odorant-Degrading Enzyme active towards a host plant volatile.
PMCID: PMC2993938  PMID: 21124773
24.  Expression and Membrane Topology of Anopheles gambiae Odorant Receptors in Lepidopteran Insect Cells 
PLoS ONE  2010;5(11):e15428.
A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties.
PMCID: PMC2972716  PMID: 21082026
25.  Odorant-Binding Proteins of the Malaria Mosquito Anopheles funestus sensu stricto 
PLoS ONE  2010;5(10):e15403.
The mosquito Anopheles funestus is one of the major malaria vector species in sub-Saharan Africa. Olfaction is essential in guiding mosquito behaviors. Odorant-binding proteins (OBPs) are highly expressed in insect olfactory tissues and involved in the first step of odorant reception. An improved understanding of the function of malaria mosquito OBPs may contribute to identifying new attractants/repellents and assist in the development of more efficient and environmentally friendly mosquito controlling strategies.
In this study, a large screening of over 50 ecologically significant odorant compounds led to the identification of 12 ligands that elicit significant electroantennographic (EAG) responses from An. funestus female antennae. To compare the absolute efficiency/potency of these chemicals, corrections were made for differences in volatility by determining the exact amount in a stimulus puff. Fourteen AfunOBP genes were cloned and their expression patterns were analyzed. AfunOBP1, 3, 7, 20 and 66 showed olfactory tissue specificity by reverse transcriptase PCR (RT-PCR). Quantitative real-time PCR (qRT-PCR) analysis showed that among olfactory-specific OBPs, AfunOBP1 and 3 are the most enriched OBPs in female antennae. Binding assay experiments showed that at pH 7, AfunOBP1 significantly binds to 2-undecanone, nonyl acetate, octyl acetate and 1-octen-3-ol but AfunOBP3, which shares 68% identify with AfunOBP1 at amino acid level, showed nearly no binding activity to the selected 12 EAG-active odorant compounds.
This work presents for the first time a study on the odorants and OBPs of the malaria vector mosquito An. funestus, which may provide insight into the An. funestus olfactory research, assist in a comparative study between major malaria mosquitoes An. gambiae and An. funestus olfactory system, and help developing new mosquito control strategies to reduce malaria transmission.
PMCID: PMC2962654  PMID: 21042539

Results 1-25 (46)