PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Comprehensive Luciferase-Based Reporter Gene Assay Reveals Previously Masked Up-Regulatory Effects of miRNAs 
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the majority of the transcriptome at a post-transcriptional level. Because of this critical role, it is important to ensure that the assays used to determine their functionality are robust and reproducible. Typically, the reporter gene assay in cell-based systems has been the first-line method to study miRNA functionality. In order to overcome some of the potential errors in interpretation that can be associated with this assay, we have developed a detailed protocol for the luciferase reporter gene assay that has been modified for miRNAs. We demonstrate that normalization against the effect of the miRNA and cellular factors on the luciferase coding sequence is essential to obtain the specific impact of the miRNA on the 3'UTR (untranslated region) target. Our findings suggest that there is a real possibility that the roles for miRNA in transcriptome regulation may be misreported due to inaccurate normalization of experimental data and also that up-regulatory effects of miRNAs are not uncommon in cells. We propose to establish this comprehensive method as standard for miRNA luciferase reporter assays to avoid errors and misinterpretations in the functionality of miRNAs.
doi:10.3390/ijms150915592
PMCID: PMC4200788  PMID: 25192285
reporter gene assay; miRNA; normalization; NEFL (neurofilament)
2.  Analysis of Novel NEFL mRNA Targeting microRNAs in Amyotrophic Lateral Sclerosis 
PLoS ONE  2014;9(1):e85653.
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive motor neuron degeneration and neurofilament aggregate formation. Spinal motor neurons in ALS also show a selective suppression in the levels of low molecular weight neurofilament (NEFL) mRNA. We have been interested in investigating the role of microRNAs (miRNAs) in NEFL transcript stability. MiRNAs are small, 20–25 nucleotide, non-coding RNAs that act as post-transcriptional gene regulators by targeting the 3′ untranslated region (3′UTR) of mRNA resulting in mRNA decay or translational silencing. In this study, we characterized putative novel miRNAs from a small RNA library derived from control and sporadic ALS (sALS) spinal cords. We detected 80 putative novel miRNAs, 24 of which have miRNA response elements (MREs) within the NEFL mRNA 3′UTR. From this group, we determined by real-time PCR that 10 miRNAs were differentially expressed in sALS compared to controls. Functional analysis by reporter gene assay and relative quantitative RT-PCR showed that two novel miRNAs, miR-b1336 and miR-b2403, were downregulated in ALS spinal cord and that both stabilize NEFL mRNA. We confirmed the direct effect of these latter miRNAs using anit-miR-b1336 and anti-miR-b2403. These results demonstrate that the expression of two miRNAs (miRNAs miR-b1336 and miR-b2403) whose effect is to stabilize NEFL mRNA are down regulated in ALS, the net effect of which is predicted to contribute directly to the loss of NEFL steady state mRNA which is pathognomic of spinal motor neurons in ALS.
doi:10.1371/journal.pone.0085653
PMCID: PMC3893244  PMID: 24454911
3.  The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases 
Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3′ untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.
doi:10.3389/fncel.2014.00282
PMCID: PMC4159981  PMID: 25309324
neurofilament; RNA binding proteins; GEF; neurodegeneration; motor neuron disease
4.  Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype 
Neurobiology of aging  2012;33(12):2950.e5-2950.e7.
Expansions of the non-coding GGGGCC hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene were recently identified as the long sought-after cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) on chromosome 9p. In this study we aimed to determine whether the length of the normal - unexpanded - allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS and 160 FTD-ALS patients and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions and an accurate quantification of the length of the normal alleles in all patients and controls. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or non-mutation carriers.
doi:10.1016/j.neurobiolaging.2012.07.005
PMCID: PMC3617405  PMID: 22840558
Amyotrophic lateral sclerosis; Frontotemporal Dementia; C9ORF72; Repeat-expansion disease; Association study
5.  Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels 
Molecular Brain  2013;6:26.
Background
Amyotrophic Lateral Sclerosis (ALS) is a progressive, adult onset, fatal neurodegenerative disease of motor neurons. There is emerging evidence that alterations in RNA metabolism may be critical in the pathogenesis of ALS. MicroRNAs (miRNAs) are small non-coding RNAs that are key determinants of mRNA stability. Considering that miRNAs are increasingly being recognized as having a role in a variety of neurodegenerative diseases, we decided to characterize the miRNA expression profile in spinal cord (SC) tissue in sporadic ALS (sALS) and controls. Furthermore, we performed functional analysis to identify a group of dysregulated miRNAs that could be responsible for the selective suppression of low molecular weight neurofilament (NFL) mRNA observed in ALS.
Results
Using TaqMan arrays we analyzed 664 miRNAs and found that a large number of miRNAs are differentially expressed in ventral lumbar SC in sALS compared to controls. We observed that the majority of dysregulated miRNAs are down-regulated in sALS SC tissues. Ingenuity Pathway Analysis (IPA) showed that dysregulated miRNAs are linked with nervous system function and cell death. We used two prediction algorithms to develop a panel of miRNAs that have recognition elements within the human NFL mRNA 3′UTR, and then we performed functional analysis for these miRNAs. Our results demonstrate that three miRNAs that are dysregulated in sALS (miR-146a*, miR-524-5p and miR-582-3p) are capable of interacting with NFL mRNA 3′UTR in a manner that is consistent with the suppressed steady state mRNA levels observed in spinal motor neurons in ALS.
Conclusions
The miRNA expression profile is broadly altered in the SC in sALS. Amongst these is a group of dysregulated miRNAs directly regulate the NFL mRNA 3′UTR, suggesting a role in the selective suppression of NFL mRNA in the ALS spinal motor neuron neurofilamentous aggregate formation.
doi:10.1186/1756-6606-6-26
PMCID: PMC3668997  PMID: 23705811
miRNA; Amyotrophic lateral sclerosis; Neurofilament
6.  Ataxin-2 repeat-length variation and neurodegeneration 
Human Molecular Genetics  2011;20(16):3207-3212.
Expanded glutamine repeats of the ataxin-2 (ATXN2) protein cause spinocerebellar ataxia type 2 (SCA2), a rare neurodegenerative disorder. More recent studies have suggested that expanded ATXN2 repeats are a genetic risk factor for amyotrophic lateral sclerosis (ALS) via an RNA-dependent interaction with TDP-43. Given the phenotypic diversity observed in SCA2 patients, we set out to determine the polymorphic nature of the ATXN2 repeat length across a spectrum of neurodegenerative disorders. In this study, we genotyped the ATXN2 repeat in 3919 neurodegenerative disease patients and 4877 healthy controls and performed logistic regression analysis to determine the association of repeat length with the risk of disease. We confirmed the presence of a significantly higher number of expanded ATXN2 repeat carriers in ALS patients compared with healthy controls (OR = 5.57; P= 0.001; repeat length >30 units). Furthermore, we observed significant association of expanded ATXN2 repeats with the development of progressive supranuclear palsy (OR = 5.83; P= 0.004; repeat length >30 units). Although expanded repeat carriers were also identified in frontotemporal lobar degeneration, Alzheimer's and Parkinson's disease patients, these were not significantly more frequent than in controls. Of note, our study identified a number of healthy control individuals who harbor expanded repeat alleles (31–33 units), which suggests caution should be taken when attributing specific disease phenotypes to these repeat lengths. In conclusion, our findings confirm the role of ATXN2 as an important risk factor for ALS and support the hypothesis that expanded ATXN2 repeats may predispose to other neurodegenerative diseases, including progressive supranuclear palsy.
doi:10.1093/hmg/ddr227
PMCID: PMC3140823  PMID: 21610160
7.  Transient middle cerebral artery occlusion induces microglial priming in the lumbar spinal cord: a novel model of neuroinflammation 
Background
Middle cerebral artery occlusion (MCAo) in mice results in a brain infarct, the volume of which depends on the length of occlusion. Following permanent occlusion, neuropathological changes – including a robust glial inflammatory response – also occur downstream of the infarct in the spinal cord.
Methods
We have performed short, transient MCAo in mice to induce penumbral damage spanning the motor cortex. A 30 minute MCAo using a poly-L-lysine-coated intraluminal suture introduced through a common carotid artery incision was performed in 17 female C57BL/6 mice. Five sham-operated mice received common carotid artery ligation without insertion of the suture. Neurobehavioural assessments were performed during occlusion, immediately following reperfusion, and at 24 and 72 hours post-reperfusion. Routine histological and immunohistochemical studies were performed at 24 and 72 hours.
Results
In 11 of the surviving 16 mice subjected to MCAo, we observed a focal, subcortical necrotic lesion and a reproducible, diffuse cortical lesion with accompanying upper motor neuron involvement. This was associated with contralateral ventral spinal cord microglial priming without significant reactive astrocytosis or lower motor neuron degeneration.
Conclusion
The advantages to this method are that it yields a reproducible cortical lesion, the extent of which is predictable using behavioural testing during the period of ischemia, with upper motor neuron involvement and downstream priming, but not full activation, of microglia in the lumbar spinal cord. In addition, survival is excellent following the 30 minutes of occlusion, rendering this a novel and useful model for examining the effects of microglial priming in the spinal motor neuron pool.
doi:10.1186/1742-2094-5-29
PMCID: PMC2474603  PMID: 18606006

Results 1-7 (7)