Search tips
Search criteria

Results 1-25 (48)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Prenatal healthcare providers’ Gaucher disease carrier screening practices 
Gaucher disease (GD) carrier screening is controversial in the medical community. The goal of this study was to explore prenatal healthcare providers’ current GD carrier screening practices.
Prenatal healthcare providers were invited by email to complete an electronic-based survey.
A total of 1454 prenatal healthcare providers, including 209 genetic counselors, 450 midwives, and 795 physicians, completed the study. The majority of genetic counselors (n=208/209, >99%), physicians (n=415/450, 92%), and midwives (n=634/795, 80%) currently offer Jewish ancestry disease carrier screening to couples in whom one or both partners are Jewish. Of providers who offer Jewish ancestry disease screening, the majority of genetic counselors (n=199/208, 96%) and physicians (n=352/415, 85%) always or sometimes offer GD screening whereas the majority of midwives (n=357/634, 56%) never offer GD screening.
This study presents the first report of prenatal healthcare providers’ GD carrier screening practices in North America. Our results indicate that GD carrier screening is being offered at a high rate within the scope of Jewish ancestry-based carrier screening. This may highlight a need to move away from the debate as to whether GD carrier screening should be offered and, instead, focus on how best to provide GD carrier screening services.
PMCID: PMC3530379  PMID: 22653536
Gaucher disease; prenatal healthcare providers; carrier screening; practices; survey
2.  Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier 
Acta neuropathologica  2014;129(1):39-52.
C9orf72 promoter hypermethylation inhibits the accumulation of pathologies which have been postulated to be neurotoxic. We tested here whether C9orf72 hypermethylation is associated with prolonged disease in C9orf72 mutation carriers. C9orf72 methylation was quantified from brain or blood using methylation-sensitive restriction enzyme digest-qPCR in a cross-sectional cohort of 118 C9orf72 repeat expansion carriers and 19 non-carrier family members. Multivariate regression models were used to determine whether C9orf72 hypermethylation was associated with age at onset, disease duration, age at death, or hexanucleotide repeat expansion size. Permutation analysis was performed to determine whether C9orf72 methylation is heritable. We observed a high correlation between C9orf72 methylation across tissues including cerebellum, frontal cortex, spinal cord and peripheral blood. While C9orf72 methylation was not significantly different between ALS and FTD and did not predict age at onset, brain and blood C9orf72 hypermethylation was associated with later age at death in FTD (brain: β = 0.18, p = 0.006; blood: β = 0.15, p < 0.001), and blood C9orf72 hypermethylation was associated with longer disease duration in FTD (β = 0.03, p = 0.007). Furthermore, C9orf72 hypermethylation was associated with smaller hexanucleotide repeat length (β = −16.69, p = 0.033). Finally, analysis of pedigrees with multiple mutation carriers demonstrated a significant association between C9orf72 methylation and family relatedness (p < 0.0001). C9orf72 hypermethylation is associated with prolonged disease in C9orf72 repeat expansion carriers with FTD. The attenuated clinical phenotype associated with C9orf72 hypermethylation suggests that slower clinical progression in FTD is associated with reduced expression of mutant C9orf72. These results support the hypothesis that expression of the hexanucleotide repeat expansion is associated with a toxic gain of function.
PMCID: PMC4282973  PMID: 25388784
Neurodegeneration; Frontotemporal lobar degeneration; Frontotemporal dementia; Amyotrophic lateral sclerosis; Epigenetics
3.  Positive Florbetapir PET Amyloid Imaging in a Subject with Frequent Cortical Neuritic Plaques and Frontotemporal Lobar Degeneration with TDP43-Positive Inclusions 
Abnormal neuronal accumulation and modification of TAR DNA binding protein 43 (TDP-43) have recently been discovered to be defining histopathological features of particular subtypes of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), and are also common in aging, particularly coexisting with hippocampal sclerosis and Alzheimer's disease (AD) pathology. This case report describes a 72 year old Hispanic male with no family history of neurological disease, who presented at age 59 with obsessive behavior, anxiety, agitation and dysphasia. Positron emission tomography (PET) imaging using the amyloid ligand 18F florbetapir (Amyvid) was positive. Postmortem examination revealed frequent diffuse and neuritic amyloid plaques throughout the cerebral cortex, thalamus and striatum, Braak stage II neurofibrillary degeneration and frequent frontal and temporal cortex TDP-43-positive neurites with rare nuclear inclusions. The case is unusual and instructive because of the co-existence of frequent cortical and diencephalic amyloid plaques with extensive TDP-43-positive histopathology in the setting of early-onset dementia and because it demonstrates that a positive cortical amyloid imaging signal in a subject with dementia does not necessarily establish that AD is the sole cause.
PMCID: PMC4167919  PMID: 24927705
Alzheimer's disease; frontotemporal dementia; neurofibrillary degeneration; neuritic amyloid plaques
5.  A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank 
Neurodegenerative diseases (NDs) are defined by the accumulation of abnormal protein deposits in the central nervous system (CNS), and only neuropathological examination enables a definitive diagnosis. Brain banks and their associated scientific programs have shaped the actual knowledge of NDs, identifying and characterizing the CNS deposits that define new diseases, formulating staging schemes, and establishing correlations between neuropathological changes and clinical features. However, brain banks have evolved to accommodate the banking of biofluids as well as DNA and RNA samples. Moreover, the value of biobanks is greatly enhanced if they link all the multidimensional clinical and laboratory information of each case, which is accomplished, optimally, using systematic and standardized operating procedures, and in the framework of multidisciplinary teams with the support of a flexible and user-friendly database system that facilitates the sharing of information of all the teams in the network. We describe a biobanking system that is a platform for discovery research at the Center for Neurodegenerative Disease Research at the University of Pennsylvania.
PMCID: PMC3933464  PMID: 23978324
Cerebrospinal fluid; Plasma; Serum; Autopsy; Neurodegeneration; Alzheimer’s Disease; Dementia; Genetics; Parkinson’s Disease; Frontotemporal lobar degeneration
6.  Stages of pTDP-43 pathology in amyotrophic lateral sclerosis 
Annals of neurology  2013;74(1):20-38.
To see if the distribution patterns of phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) intraneuronal inclusions in amyotrophic lateral sclerosis (ALS) permit recognition of neuropathological stages.
pTDP-43 immunohistochemistry was performed on 70 μm sections from ALS autopsy cases (N=76) classified by clinical phenotype and genetic background.
ALS cases with the lowest burden of pTDP-43 pathology were characterized by lesions in the agranular motor cortex, brainstem motor nuclei of cranial nerves XII-X, VII, V, and spinal cord α-motoneurons (stage 1). Increasing burdens of pathology showed involvement of the prefrontal neocortex (middle frontal gyrus), brainstem reticular formation, precerebellar nuclei, and the red nucleus (stage 2). In stage 3, pTDP-43 pathology involved the prefrontal (gyrus rectus and orbital gyri) and then postcentral neocortex and striatum. Cases with the greatest burden of pTDP-43 lesions showed pTDP-43 inclusions in anteromedial portions of the temporal lobe, including the hippocampus (stage 4). At all stages, these lesions were accompanied by pTDP-43 oligodendroglial aggregates. Ten cases with C9orf72 repeat expansion displayed the same sequential spreading pattern as non-expansion cases but a greater regional burden of lesions, indicating a more fulminant dissemination of pTDP-43 pathology.
pTDP-43 pathology in ALS possibly disseminates in a sequential pattern that permits recognition of four neuropathological stages consistent with the hypothesis that pTDP-43 pathology is propagated along axonal pathways. Moreover, the fact that pTDP-43 pathology develops in the prefrontal cortex as part of an ongoing disease process could account for the development of executive cognitive deficits in ALS.
PMCID: PMC3785076  PMID: 23686809
7.  Genetic & Neuronanatomic Associations in Sporadic Frontotemporal Lobar Degeneration 
Neurobiology of aging  2013;35(6):1473-1482.
Genome-wide association studies have identified SNPs that are sensitive for tau or TDP-43 pathology in frontotemporal lobar degeneration (FTLD). Neuroimaging analyses have revealed distinct distributions of disease in FTLD patients with genetic mutations. However, genetic influences on neuroanatomical structure in sporadic FTLD have not been assessed. In this report we use novel multivariate tools, eigenanatomy and sparse canonical correlation analysis (SCCAN), to identify associations between SNPs and neuroanatomical structure in sporadic FTLD. MRI analyses revealed that rs8070723 (MAPT) was associated with grey matter variance in the temporal cortex. DTI analyses revealed that rs1768208 (MOBP), rs646776 (near SORT1) and rs5848 (PGRN) were associated with white matter variance in the midbrain and superior longitudinal fasciculus. In an independent autopsy series we observed that rs8070723 and rs1768208 conferred significant risk of tau pathology relative to TDP-43, and rs646776 conferred increased risk of TDP-43 pathology relative to tau. Identified brain regions and SNPs may help provide an in vivo screen for underlying pathology in FTLD and contribute to our understanding of sporadic FTLD.
PMCID: PMC3961542  PMID: 24373676
Frontotemporal lobar degeneration; Neuroimaging; Genetics; Biomarkers
8.  GWAS of cerebrospinal fluid tau levels identifies novel risk variants for Alzheimer’s disease 
Neuron  2013;78(2):256-268.
Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau) and Aβ42 are established biomarkers for Alzheimer’s Disease (AD), and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n=1,269), identifying three novel genome-wide significant loci for CSF tau and ptau: rs9877502 (P=4.89×10−9 for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (P=1.07×10−8 and P=3.22×10−9 for tau and ptau respectively), located at 9p24.2 within GLIS3 and rs6922617 (P = 3.58×10−8 for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent datasets rs9877502 showed a strong association with risk for AD, tangle pathology and global cognitive decline (P=2.67×10−4, 0.039, 4.86×10−5 respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci.
PMCID: PMC3664945  PMID: 23562540
9.  Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD) 
Acta neuropathologica  2014;127(3):423-439.
We examined regional distribution patterns of phosphorylated 43-kDa TAr DNA-binding protein (pTDP-43) intraneuronal inclusions in frontotemporal lobar degeneration (FTLD). Immunohistochemistry was performed on 70 μm sections from FTLD-TDP autopsy cases (n = 39) presenting with behavioral variant frontotemporal dementia. Two main types of cortical pTDP-43 pathology emerged, characterized by either predominantly perikaryal pTDP-43 inclusions (cytoplasmic type, cFTLD) or long aggregates in dendrites (neuritic type, nFTLD). Cortical involvement in nFTLD was extensive and frequently reached occipital areas, whereas cases with cFTLD often involved bulbar somatomotor neurons and the spinal cord. We observed four patterns indicative of potentially sequential dissemination of pTDP-43: cases with the lowest burden of pathology (pattern I) were characterized by widespread pTDP-43 lesions in the orbital gyri, gyrus rectus, and amygdala. With increasing burden of pathology (pattern II) pTDP-43 lesions emerged in the middle frontal and anterior cingulate gyrus as well as in anteromedial temporal lobe areas, the superior and medial temporal gyri, striatum, red nucleus, thalamus, and precerebellar nuclei. More advanced cases showed a third pattern (III) with involvement of the motor cortex, bulbar somatomotor neurons, and the spinal cord anterior horn, whereas cases with the highest burden of pathology (pattern IV) were characterized by pTDP-43 lesions in the visual cortex. We interpret the four neuropathological patterns in bvFTD to be consistent with the hypothesis that pTDP-43 pathology can spread sequentially and may propagate along axonal pathways.
PMCID: PMC3971993  PMID: 24407427
ALS, amyotrophic lateral sclerosis; Frontotemporal lobar degeneration; FTLD, frontotemporal dementia; FTD; Neurodegeneration; Proteinopathies; TDP-43
10.  Cognitive decline and reduced survival in C9orf72 expansion Frontotemporal degeneration and Amyotrophic lateral sclerosis 
Significant heterogeneity in clinical features of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) cases with the pathogenic C9orf72 expansion (C9P) have been described. To clarify this issue, we compared a large C9P cohort with carefully matched non-expansion (C9N) cases with a known or highly-suspected underlying TDP-43 proteinopathy.
A retrospective-cohort study using available cross-sectional and longitudinal clinical and neuropsychological data, MRI voxel-based morphometry (VBM) and neuropathological assessment from 64 C9P cases (ALS=31, FTLD=33) and 79 C9N cases (ALS=36, FTLD=43).
C9P cases had an earlier age of onset (p=0.047), and in the subset of deceased patients, an earlier age of death (p=0.014) than C9N. C9P had more rapid progression than C9N: C9P ALS cases had a shortened survival (2.6±0.3 years) compared to C9N ALS (3.8±0.4 years; log-rankλ2=4.183,p=0.041), and C9P FTLD showed a significantly greater annualized rate of decline in letter fluency (4.5±1.3words/year) than C9N FTLD (1.4±0.8words/year, p=0.023). VBM revealed greater atrophy in the right fronto-insular, thalamus, cerebellum and bilateral parietal regions for C9P FTLD relative to C9N FTLD, and regression analysis related verbal fluency scores to atrophy in frontal and parietal regions. Neuropathologic analysis found greater neuronal loss in the mid-frontal cortex in C9P FTLD, and mid-frontal cortex TDP-43 inclusion severity correlated with poor letter fluency performance.
C9P cases may have a shorter survival in ALS and more rapid rate of cognitive decline related to frontal and parietal disease in FTLD. C9orf72 genotyping may provide useful prognostic and diagnostic clinical information for ALS and FTLD patients.
PMCID: PMC3543474  PMID: 23117491
Frontotemporal dementia; Amyotrophic lateral sclerosis; C9orf72; neuropsychological tests; neuroimaging
11.  Development and Validation of Pedigree Classification Criteria for Frontotemporal Lobar Degeneration 
JAMA neurology  2013;70(11):1411-1417.
A significant portion of frontotemporal lobar degeneration (FTLD) is due to inherited gene mutations, and we are unaware of a large sequential series that includes a recently discovered inherited cause of FTLD. There is also great need to develop clinical tools and approaches that will assist clinicians in the identification and counseling of patients with FTLD and their families regarding the likelihood of an identifiable genetic cause.
To ascertain the frequency of inherited FTLD and develop validated pedigree classification criteria for FTLD that provide a standardized means to evaluate pedigree information and insight into the likelihood of mutation-positive genetic test results for C9orf72, MAPT, and GRN.
Information about pedigrees and DNA was collected from 306 serially assessed patients with a clinical diagnosis of FTLD. This information included gene test results for C9orf72, MAPT, and GRN. Pedigree classification criteria were developed based on a literature review of FTLD genetics and pedigree tools and then refined by reviewing mutation-positive and -negative pedigrees to determine differentiating characteristics.
Academic medical center.
Patients with FTLD.
Familial risk.
The rate of C9orf72, MAPT, or GRN mutation–positive FTLD in this series was 15.4%. Categories designating the risk level for hereditary cause were termed high, medium, low, apparent sporadic, and unknown significance. Thirty-nine pedigrees (12.7%)met criteria for high, 31 (10.1%) for medium, 46 (15.0%) for low, 91 (29.7%) for apparent sporadic, and 99 (32.4%) for unknown significance. The mutation-detection rates were as follows: high, 64.1%; medium, 29%; low, 10.9%; apparent sporadic, 1.1%; and unknown significance, 7.1%. Mutation-detection rates differed significantly between the high and other categories.
Mutation rates are high in FTLD spectrum disorders, and the proposed criteria provide a validated standard for the classification of FTLD pedigrees. The combination of pedigree criteria and mutation-detection rates has important implications for genetic counseling and testing in clinical settings.
PMCID: PMC3906581  PMID: 24081456
12.  Can MRI screen for CSF biomarkers in neurodegenerative disease? 
Neurology  2013;80(2):132-138.
Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD) may have overlapping clinical presentations despite distinct underlying neuropathologies, thus making in vivo diagnosis challenging. In this study, we evaluate the utility of MRI as a noninvasive screening procedure for the differential diagnosis of AD and FTLD.
We recruited 185 patients with a clinically diagnosed neurodegenerative disease consistent with AD or FTLD who had a lumbar puncture and a volumetric MRI. A subset of 32 patients had genetic or autopsy-confirmed AD or FTLD. We used singular value decomposition to decompose MRI volumes and linear regression and cross-validation to predict CSF total tau (tt) and β-amyloid (Aβ1-42) ratio (tt/Aβ) in patients with AD and patients with FTLD. We then evaluated accuracy of MRI-based predicted tt/Aβ using 4 converging sources including neuroanatomic visualization and categorization of a subset of patients with genetic or autopsy-confirmed AD or FTLD.
Regression analyses showed that MRI-predicted tt/Aβ is highly related to actual CSF tt/Aβ. In each group, both predicted and actual CSF tt/Aβ have extensively overlapping neuroanatomic correlates: low tt/Aβ consistent with FTLD is related to ventromedial prefrontal regions while high tt/Aβ consistent with AD is related to posterior cortical regions. MRI-predicted tt/Aβ is 75% accurate at identifying underlying diagnosis in patients with known pathology and in clinically diagnosed patients with known CSF tt/Aβ levels.
MRI may serve as a noninvasive procedure that can screen for AD and FTLD pathology as a surrogate for CSF biomarkers.
PMCID: PMC3589187  PMID: 23269595
13.  TDP-43 skeins show properties of amyloid in a subset of ALS cases 
Acta neuropathologica  2012;125(1):121-131.
Aggregation of TDP-43 proteins to form intracellular inclusions is the primary pathology in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with TDP-43 inclusions (FTLD-TDP). Histologically, in the cerebral cortex and limbic regions of affected ALS and FTLD-TDP patients, these pathologies occur as a variety of cytoplasmic, neuritic and intranuclear TDP-43 inclusions. In the spinal cord and lower brainstem of ALS patients, the lesions form cytoplasmic dashes or complex filamentous and spherical profiles in addition to skein-like inclusions (SLI). Ultrastructurally, the morphology of TDP-43 inclusions is heterogeneous but mainly composed of loose bundles of 10–20 nm diameter straight filaments associated with electron dense granular material. All of these TDP-43 inclusions are generally described as disordered amorphous aggregations unlike the amyloid fibrils that characterize protein accumulations in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
We here report that Thioflavin-S positive SLI are present in a subset of ALS cases, while TDP-43 inclusions outside the spinal cord lack the chemical properties of amyloid. Further, we examine the differential enrichment of fibrillar profiles in SLI of ALS cases by TDP-43 immuno-electron microscopy (immuno-EM). The demonstration that pathological TDP-43 can be amyloidogenic in situ suggests the following conclusions: 1) the conformational changes associated with TDP-43 aggregation are more complex than previously thought; 2) Thioflavin-S positive SLI may be composed primarily of filamentous ultrastructures.
PMCID: PMC3536927  PMID: 23124365
TDP-43; amyloid; skein; amyotrophic lateral sclerosis; ALS; frontotemporal lobar degeneration; FTLD-TDP
14.  White Matter Imaging Helps Dissociate Tau from TDP-43 in Frontotemporal Lobar Degeneration 
Frontotemporal lobar degeneration (FTLD) is most commonly associated with TAR-DNA binding protein (TDP-43) or tau pathology at autopsy, but there are no in vivo biomarkers reliably discriminating between sporadic cases. As disease-modifying treatments emerge, it is critical to accurately identify underlying pathology in living patients so that they can be entered into appropriate etiology-directed clinical trials. Patients with tau inclusions (FTLD-TAU) appear to have relatively greater white matter (WM) disease at autopsy than those patients with TDP-43 (FTLD-TDP). In this paper, we investigate the ability of white matter (WM) imaging to help discriminate between FTLD-TAU and FTLD-TDP during life using diffusion tensor imaging (DTI).
Patients with autopsy-confirmed disease or a genetic mutation consistent with FTLD-TDP or FTLD-TAU underwent multimodal T1 volumetric MRI and diffusion weighted imaging scans. We quantified cortical thickness in GM and fractional anisotropy (FA) in WM. We performed Eigenanatomy, a statistically robust dimensionality reduction algorithm, and used leave-one-out cross-validation to predict underlying pathology. Neuropathological assessment of GM and WM disease burden was performed in the autopsy-cases to confirm our findings of an ante-mortem GM and WM dissociation in the neuroimaging cohort.
ROC curve analyses evaluated classification accuracy in individual patients and revealed 96% sensitivity and 100% specificity for WM analyses. FTLD-TAU had significantly more WM degeneration and inclusion severity at autopsy relative to FTLD-TDP.
These neuroimaging and neuropathological investigations provide converging evidence for greater WM burden associated with FTLD-TAU, and emphasize the role of WM neuroimaging for in vivo discrimination between FTLD-TAU and FTLD-TDP.
PMCID: PMC3737288  PMID: 23475817
15.  Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U 
Multiple neurodegenerative diseases are characterized by the abnormal accumulation of FUS protein including various subtypes of frontotemporal lobar degeneration with FUS inclusions (FTLD-FUS). These subtypes include atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U), basophilic inclusion body disease (BIBD) and neuronal intermediate filament inclusion disease (NIFID). Despite considerable overlap, certain pathologic features including differences in inclusion morphology, the subcellular localization of inclusions, and the relative paucity of subcortical FUS pathology in aFTLD-U indicate that these three entities represent related but distinct diseases. In this study, we report the clinical and pathologic features of three cases of aFTLD-U and two cases of late-onset BIBD with an emphasis on the anatomic distribution of FUS inclusions.
The aFTLD-U cases demonstrated FUS inclusions in cerebral cortex, subcortical grey matter and brainstem with a predilection for anterior forebrain and rostral brainstem. In contrast, the distribution of FUS pathology in late-onset BIBD cases demonstrated a predilection for pyramidal and extrapyramidal motor regions with relative sparing of cerebral cortex and limbic regions.
The topography of FUS pathology in these cases demonstrate the diversity of sporadic FUS inclusion body diseases and raises the possibility that late-onset motor neuron disease with BIBD neuropathology may exhibit unique clinical and pathologic features.
PMCID: PMC3767453  PMID: 24027631
Frontotemporal dementia; Frontotemporal lobar degeneration; Motor neuron disease; Amyotrophic lateral sclerosis
17.  Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases 
Coppola, Giovanni | Chinnathambi, Subashchandrabose | Lee, Jason JiYong | Dombroski, Beth A. | Baker, Matt C. | Soto-Ortolaza, Alexandra I. | Lee, Suzee E. | Klein, Eric | Huang, Alden Y. | Sears, Renee | Lane, Jessica R. | Karydas, Anna M. | Kenet, Robert O. | Biernat, Jacek | Wang, Li-San | Cotman, Carl W. | DeCarli, Charles S. | Levey, Allan I. | Ringman, John M. | Mendez, Mario F. | Chui, Helena C. | Le Ber, Isabelle | Brice, Alexis | Lupton, Michelle K. | Preza, Elisavet | Lovestone, Simon | Powell, John | Graff-Radford, Neill | Petersen, Ronald C. | Boeve, Bradley F. | Lippa, Carol F. | Bigio, Eileen H. | Mackenzie, Ian | Finger, Elizabeth | Kertesz, Andrew | Caselli, Richard J. | Gearing, Marla | Juncos, Jorge L. | Ghetti, Bernardino | Spina, Salvatore | Bordelon, Yvette M. | Tourtellotte, Wallace W. | Frosch, Matthew P. | Vonsattel, Jean Paul G. | Zarow, Chris | Beach, Thomas G. | Albin, Roger L. | Lieberman, Andrew P. | Lee, Virginia M. | Trojanowski, John Q. | Van Deerlin, Vivianna M. | Bird, Thomas D. | Galasko, Douglas R. | Masliah, Eliezer | White, Charles L. | Troncoso, Juan C. | Hannequin, Didier | Boxer, Adam L. | Geschwind, Michael D. | Kumar, Satish | Mandelkow, Eva-Maria | Wszolek, Zbigniew K. | Uitti, Ryan J. | Dickson, Dennis W. | Haines, Jonathan L. | Mayeux, Richard | Pericak-Vance, Margaret A. | Farrer, Lindsay A. | Ross, Owen A. | Rademakers, Rosa | Schellenberg, Gerard D. | Miller, Bruce L. | Mandelkow, Eckhard | Geschwind, Daniel H.
Human Molecular Genetics  2012;21(15):3500-3512.
Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects.
Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6–5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3–4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated.
PMCID: PMC3392107  PMID: 22556362
18.  Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain 
Frontotemporal lobar degeneration (FTLD) is the second most common cause of dementia in individuals under 65 years old and manifests as alterations in behavior, personality, or language secondary to degeneration of the frontal and/or temporal lobes. FTLD-TDP, the largest neuropathological subset of FTLD, is characterized by hyperphosphorylated, ubiquitinated TAR DNA-binding protein 43 (TDP-43) inclusions. Mutations in progranulin (GRN), a neuroprotective growth factor, are one of the most common Mendelian genetic causes of FTLD-TDP. Moreover, a recent genome-wide association study (GWAS) identified multiple SNPs within the uncharacterized gene TMEM106B that significantly associated with FTLD-TDP, suggesting that TMEM106B genotype confers risk for FTLD-TDP. Indeed, TMEM106B expression levels, which correlate with TMEM106B genotype, may play a role in the pathogenesis of disease.
Since little is known about TMEM106B and its expression in human brain, we performed immunohistochemical studies of TMEM106B in postmortem human brain samples from normal individuals, FTLD-TDP individuals with and without GRN mutations, and individuals with other neurodegenerative diseases. We find that TMEM106B protein is cytoplasmically expressed in both histopathologically affected and unaffected areas of the brain by neurons, glia, and endothelial cells/pericytes. Furthermore, we demonstrate that TMEM106B expression may differ among neuronal subtypes. Finally, we show that TMEM106B neuronal expression is significantly more disorganized in FTLD-TDP cases with GRN mutations, compared to normal and disease controls, including FTLD-TDP cases without GRN mutations.
Our data provide an initial neuropathological characterization of the newly discovered FTLD-TDP-associated protein TMEM106B. In addition, we demonstrate that FTLD-TDP cases with GRN mutations exhibit a loss of neuronal TMEM106B subcellular localization, adding to evidence that TMEM106B and progranulin may be pathophysiologically linked in FTLD-TDP.
PMCID: PMC3893524  PMID: 24252750
TMEM106B; Frontotemporal lobar degeneration; Frontotemporal dementia; TDP-43; Progranulin; FTLD-TDP
19.  Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis 
Human Molecular Genetics  2012;21(13):2899-2911.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Mutations in related RNA-binding proteins TDP-43, FUS/TLS and TAF15 have been connected to ALS. These three proteins share several features, including the presence of a bioinformatics-predicted prion domain, aggregation–prone nature in vitro and in vivo and toxic effects when expressed in multiple model systems. Given these commonalities, we hypothesized that a related protein, EWSR1 (Ewing sarcoma breakpoint region 1), might also exhibit similar properties and therefore could contribute to disease. Here, we report an analysis of EWSR1 in multiple functional assays, including mutational screening in ALS patients and controls. We identified three missense variants in EWSR1 in ALS patients, which were absent in a large number of healthy control individuals. We show that disease-specific variants affect EWSR1 localization in motor neurons. We also provide multiple independent lines of in vitro and in vivo evidence that EWSR1 has similar properties as TDP-43, FUS and TAF15, including aggregation–prone behavior in vitro and ability to confer neurodegeneration in Drosophila. Postmortem analysis of sporadic ALS cases also revealed cytoplasmic mislocalization of EWSR1. Together, our studies highlight a potential role for EWSR1 in ALS, provide a collection of functional assays to be used to assess roles of additional RNA-binding proteins in disease and support an emerging concept that a class of aggregation–prone RNA-binding proteins might contribute broadly to ALS and related neurodegenerative diseases.
PMCID: PMC3373238  PMID: 22454397
20.  Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis 
Whitcomb, David C. | LaRusch, Jessica | Krasinskas, Alyssa M. | Klei, Lambertus | Smith, Jill P. | Brand, Randall E. | Neoptolemos, John P. | Lerch, Markus M. | Tector, Matt | Sandhu, Bimaljit S. | Guda, Nalini M. | Orlichenko, Lidiya | Alkaade, Samer | Amann, Stephen T. | Anderson, Michelle A. | Baillie, John | Banks, Peter A. | Conwell, Darwin | Coté, Gregory A. | Cotton, Peter B. | DiSario, James | Farrer, Lindsay A. | Forsmark, Chris E. | Johnstone, Marianne | Gardner, Timothy B. | Gelrud, Andres | Greenhalf, William | Haines, Jonathan L. | Hartman, Douglas J. | Hawes, Robert A. | Lawrence, Christopher | Lewis, Michele | Mayerle, Julia | Mayeux, Richard | Melhem, Nadine M. | Money, Mary E. | Muniraj, Thiruvengadam | Papachristou, Georgios I. | Pericak-Vance, Margaret A. | Romagnuolo, Joseph | Schellenberg, Gerard D. | Sherman, Stuart | Simon, Peter | Singh, Vijay K. | Slivka, Adam | Stolz, Donna | Sutton, Robert | Weiss, Frank Ulrich | Wilcox, C. Mel | Zarnescu, Narcis Octavian | Wisniewski, Stephen R. | O'Connell, Michael R. | Kienholz, Michelle L. | Roeder, Kathryn | Barmada, M. Michael | Yadav, Dhiraj | Devlin, Bernie | Albert, Marilyn S. | Albin, Roger L. | Apostolova, Liana G. | Arnold, Steven E. | Baldwin, Clinton T. | Barber, Robert | Barnes, Lisa L. | Beach, Thomas G. | Beecham, Gary W. | Beekly, Duane | Bennett, David A. | Bigio, Eileen H. | Bird, Thomas D. | Blacker, Deborah | Boxer, Adam | Burke, James R. | Buxbaum, Joseph D. | Cairns, Nigel J. | Cantwell, Laura B. | Cao, Chuanhai | Carney, Regina M. | Carroll, Steven L. | Chui, Helena C. | Clark, David G. | Cribbs, David H. | Crocco, Elizabeth A. | Cruchaga, Carlos | DeCarli, Charles | Demirci, F. Yesim | Dick, Malcolm | Dickson, Dennis W. | Duara, Ranjan | Ertekin-Taner, Nilufer | Faber, Kelley M. | Fallon, Kenneth B. | Farlow, Martin R. | Ferris, Steven | Foroud, Tatiana M. | Frosch, Matthew P. | Galasko, Douglas R. | Ganguli, Mary | Gearing, Marla | Geschwind, Daniel H. | Ghetti, Bernardino | Gilbert, John R. | Gilman, Sid | Glass, Jonathan D. | Goate, Alison M. | Graff-Radford, Neill R. | Green, Robert C. | Growdon, John H. | Hakonarson, Hakon | Hamilton-Nelson, Kara L. | Hamilton, Ronald L. | Harrell, Lindy E. | Head, Elizabeth | Honig, Lawrence S. | Hulette, Christine M. | Hyman, Bradley T. | Jicha, Gregory A. | Jin, Lee-Way | Jun, Gyungah | Kamboh, M. Ilyas | Karydas, Anna | Kaye, Jeffrey A. | Kim, Ronald | Koo, Edward H. | Kowall, Neil W. | Kramer, Joel H. | Kramer, Patricia | Kukull, Walter A. | LaFerla, Frank M. | Lah, James J. | Leverenz, James B. | Levey, Allan I. | Li, Ge | Lin, Chiao-Feng | Lieberman, Andrew P. | Lopez, Oscar L. | Lunetta, Kathryn L. | Lyketsos, Constantine G. | Mack, Wendy J. | Marson, Daniel C. | Martin, Eden R. | Martiniuk, Frank | Mash, Deborah C. | Masliah, Eliezer | McKee, Ann C. | Mesulam, Marsel | Miller, Bruce L. | Miller, Carol A. | Miller, Joshua W. | Montine, Thomas J. | Morris, John C. | Murrell, Jill R. | Naj, Adam C. | Olichney, John M. | Parisi, Joseph E. | Peskind, Elaine | Petersen, Ronald C. | Pierce, Aimee | Poon, Wayne W. | Potter, Huntington | Quinn, Joseph F. | Raj, Ashok | Raskind, Murray | Reiman, Eric M. | Reisberg, Barry | Reitz, Christiane | Ringman, John M. | Roberson, Erik D. | Rosen, Howard J. | Rosenberg, Roger N. | Sano, Mary | Saykin, Andrew J. | Schneider, Julie A. | Schneider, Lon S. | Seeley, William W. | Smith, Amanda G. | Sonnen, Joshua A. | Spina, Salvatore | Stern, Robert A. | Tanzi, Rudolph E. | Trojanowski, John Q. | Troncoso, Juan C. | Tsuang, Debby W. | Valladares, Otto | Van Deerlin, Vivianna M. | Van Eldik, Linda J. | Vardarajan, Badri N. | Vinters, Harry V. | Vonsattel, Jean Paul | Wang, Li-San | Weintraub, Sandra | Welsh-Bohmer, Kathleen A. | Williamson, Jennifer | Woltjer, Randall L. | Wright, Clinton B. | Younkin, Steven G. | Yu, Chang-En | Yu, Lei
Nature genetics  2012;44(12):1349-1354.
Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07.
PMCID: PMC3510344  PMID: 23143602
21.  Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U 
Multiple neurodegenerative diseases are characterized by the abnormal accumulation of FUS protein including various subtypes of frontotemporal lobar degeneration with FUS inclusions (FTLD-FUS). These subtypes include atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U), basophilic inclusion body disease (BIBD) and neuronal intermediate filament inclusion disease (NIFID). Despite considerable overlap, certain pathologic features including differences in inclusion morphology, the subcellular localization of inclusions, and the relative paucity of subcortical FUS pathology in aFTLD-U indicate that these three entities represent related but distinct diseases. In this study, we report the clinical and pathologic features of three cases of aFTLD-U and two cases of late-onset BIBD with an emphasis on the anatomic distribution of FUS inclusions.
The aFTLD-U cases demonstrated FUS inclusions in cerebral cortex, subcortical grey matter and brainstem with a predilection for anterior forebrain and rostral brainstem. In contrast, the distribution of FUS pathology in late-onset BIBD cases demonstrated a predilection for pyramidal and extrapyramidal motor regions with relative sparing of cerebral cortex and limbic regions.
The topography of FUS pathology in these cases demonstrate the diversity of sporadic FUS inclusion body diseases and raises the possibility that late-onset motor neuron disease with BIBD neuropathology may exhibit unique clinical and pathologic features.
PMCID: PMC3767453  PMID: 24027631
Frontotemporal dementia; Frontotemporal lobar degeneration; Motor neuron disease; Amyotrophic lateral sclerosis
22.  Frequency of the C9ORF72 hexanucleotide repeat expansion in ALS and FTD in diverse populations: a cross-sectional study 
Lancet Neurology  2012;11(4):323-330.
A hexanucleotide repeat expansion in the C9ORF72 gene has recently been shown to cause a large proportion of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD).
We screened 4,448 patients diagnosed with ALS and 1,425 patients diagnosed with FTD drawn from diverse populations for the hexanucleotide expansion using a repeat-primed PCR assay. ALS and FTD were diagnosed according to the El Escorial and Lund-Manchester criteria respectively. Familial status was based on self-reported family history of similar neurodegenerative diseases at the time of sample collection. Haplotype data of 262 patients carrying the expansion were compared with the known Finnish founder risk haplotype across the chromosomal locus. Age-related penetrance was calculated by the Kaplan-Meier method using data from 603 individuals carrying the expansion.
The mutation was observed among 7·0% (n = 236 of 3,377) of Caucasians, 4·1% (n = 2 of 49) of African-Americans, and 8·3% (n = 6 of 72) of Hispanic individuals diagnosed with sporadic ALS, whereas the rate was 6·0% (n = 59 of 981) among Caucasians diagnosed with sporadic FTD. Among Asians, 5·0% (n = 1 of 20) of familial ALS and 66·6% (n = 2 of 3) of familial FTD cases carried the repeat expansion. In contrast, mutations were not observed among patients of Native American (n = 3 sporadic ALS), Indian (n = 31 sporadic ALS, n = 31 sporadic FTD), and Pacific Islander (n = 90 sporadic ALS) ethnicity. All patients with the repeat expansion carried, either partially or fully, the founder haplotype suggesting that the expansion occurred on a single occasion in the past (~1,500 years ago). The pathogenic expansion was non-penetrant below 35 years of age, increasing to 50·0% penetrance by 58 years of age, and was almost fully penetrant by 80 years of age.
We confirm that a common single Mendelian genetic lesion is implicated in a large proportion of sporadic and familial ALS and FTD. Testing for this pathogenic expansion will be important in the management and genetic counseling of patients with these fatal neurodegenerative diseases.
See Acknowledgements.
PMCID: PMC3322422  PMID: 22406228
23.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis 
Lancet neurology  2008;7(5):409-416.
TDP-43 is a major component of the ubiquitinated inclusions that characterise amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions (FTLD-U). TDP-43 is an RNA-binding and DNA-binding protein that has many functions and is encoded by the TAR DNA-binding protein gene (TARDBP) on chromosome 1. Our aim was to investigate whether TARDBP is a candidate disease gene for familial ALS that is not associated with mutations in superoxide dismutase 1 (SOD1).
TARDBP was sequenced in 259 patients with ALS, FTLD, or both. We used TaqMan-based SNP genotyping to screen for the identifi ed variants in control groups matched to two kindreds of patients for age and ethnic origin. Additional clinical, genetic, and pathological assessments were made in these two families.
We identified two variants, p.Gly290Ala and p.Gly298Ser, in TARDBP in two familial ALS kindreds and we observed TDP-43 neuropathology in the CNS tissue available from one family. The variants are considered pathogenic mutations because they co-segregate with disease in both families, are absent in ethnically-matched controls, and are associated with TDP-43 neuropathology in several family members.
The p.Gly290Ala and p.Gly298Ser mutations are located in the glycine-rich domain that regulates gene expression and mediates protein-protein interactions; in particular TDP-43 binds to heterogeneous ribonucleoproteins (hnRNPs) via this domain. We postulate that due to the varied and important cellular functions of TDP-43, these mutations may cause neurodegeneration through both gains and losses of function. The finding of TARDBP mutations implicates TDP-43 as an active mediator of neurodegeneration in a novel class of disorders, TDP-43 proteinopathies, a class of disorder that includes ALS and FTLD-U.
PMCID: PMC3546119  PMID: 18396105
Frontotemporal lobar degeneration due to mutations in the progranulin gene (PGRN) presents a high variability both in the clinical phenotype and age of onset of disease. Factors that influence this variability remain largely unknown. The aim of our study was to determine whether selected genetic variables modify age at onset of disease in our series of 21 patients with a single splicing mutation (c.709-1G>A) in the PGRN gene, all of whom were of Basque descent. In our analysis, we included the following genetic variables: PGRN rs5848 and rs9897526 polymorphisms, APOE and MAPT genotypes and PRNP codon 129 polymorphism. We found no association between PGRN polymorphisms, APOE and MAPT genotypes and age at onset of the disease; while we report evidence for an association between PRNP codon 129 polymorphism and age at onset of disease in frontotemporal dementia-PGRN(+) patients. MM homozygous carriers presented onset of disease on average 8.5 years earlier than patients who carried at least one valine on their PRNP codon 129 (MV or VV). The biological justification for this association remains speculative.
PMCID: PMC3540994  PMID: 20711061
APOE; PRNP codon 129; frontotemporal dementia; frontotemporal lobar degeneration; progranulin; prion protein gene
25.  Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion 
Acta neuropathologica  2012;123(6):825-839.
C9OF72-hexanucleotide repeat expansions and ubiquilin-2 (UBQLN2) mutations are recently identified genetic markers in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We investigate the relationship between C9ORF72 expansions and the clinical phenotype and neuropathology of ALS and FTLD. Genetic analysis and immunohistochemistry (1HC) were performed on autopsy-confirmed ALS (N = 75), FTLD-TDP (N = 30), AD (N = 14), and controls (N = 11). IHC for neurodegenerative disease pathology consisted of C9ORF72, UBQLN, p62, and TDP-43. A C9ORF72 expansion was identified in 19.4 % of ALS and 31 % of FTLD-TDP cases. ALS cases with C9ORF72 expansions frequently showed a bulbar onset of disease (57 %) and more rapid disease progression to death compared to non-expansion cases. Staining with C9ORF72 antibodies did not yield specific pathology. UBQLN pathology showed a highly distinct pattern in ALS and FTLD-TDP cases with the C9ORF72 expansion, with UBQLN-positive cytoplasmic inclusions in the cerebellar granular layer and extensive UBQLN-positive aggregates and dystrophic neurites in the hippocampal molecular layer and CA regions. These UBQLN pathologies were sufficiently unique to allow correct prediction of cases that were later confirmed to have C9ORF72 expansions by genetic analysis. UBQLN pathology partially co-localized with p62, and to a minor extent with TDP-43 positive dystrophic neurites and spinal cord skein-like inclusions. Our data indicate a pathophysiological link between C9ORF72 expansions and UBQLN proteins in ALS and FTLD-TDP that is associated with a highly characteristic pattern of UBQLN pathology. Our study indicates that this pathology is associated with alterations in clinical phenotype, and suggests that the presence of C9ORF72 repeat expansions may indicate a worse prognosis in ALS.
PMCID: PMC3521561  PMID: 22426854
Amyotrophic lateral sclerosis; Frontotemporal lobar degeneration; C9ORF72; UBQLN2; UBQLN1

Results 1-25 (48)