Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the Phase 2b DETECTIVE trial 
Malaria Journal  2016;15:97.
Tafenoquine (TQ) and primaquine (PQ) are 8-aminoquinolines (8-AQ) with anti-hypnozoite activity against vivax malaria. PQ is the only FDA-approved medicine for preventing relapsing Plasmodium vivax infection and TQ is currently in phase 3 clinical trials for the same indication. Recent studies have provided evidence that cytochrome P450 (CYP) metabolism via CYP2D6 plays a role in PQ efficacy against P. vivax and have suggested that this effect may extend to other 8-AQs, including TQ. Here, a retrospective pharmacogenetic (PGx) investigation was performed to assess the impact of CYP2D6 metabolism on TQ and PQ efficacy in the treatment of P. vivax in the DETECTIVE study (TAF112582), a recently completed, randomized, phase 2b dose-ranging clinical trial. The impact of CYP2D6 on TQ pharmacokinetics (PK) was also investigated in TAF112582 TQ-treated subjects and in vitro CYP metabolism of TQ was explored. A limitation of the current study is that TAF112582 was not designed to be well powered for PGx, thus our findings are based on TQ or PQ efficacy in CYP2D6 intermediate metabolizers (IM), as there were insufficient poor metabolizers (PM) to draw any conclusion on the impact of the PM phenotype on efficacy.
The impact of genetically-predicted CYP2D6 reduced metabolism on relapse-free efficacy six months post-dosing of TQ or PQ, both administered in conjunction with chloroquine (CQ), was assessed using exact statistical methods in 198 P. vivax-infected study participants comparing IM to extensive metabolizers (EM). The influence of CYP2D6 metabolizer phenotypes on TQ PK was assessed comparing median TQ area under the curve (AUC). In vitro metabolism of TQ was investigated using recombinant, over-expressed human CYP enzymes and human hepatocytes. Metabolite identification experiments were performed using liquid chromatography-mass spectrometry.
Reduction of CYP2D6 activity was not associated with an increase in relapse-rate in TQ-treated subjects (p = 0.57). In contrast, and in accordance with recent literature, CYP2D6 IMs were more common (p = 0.05) in PQ-treated subjects who relapsed (50 %) than in subjects who remained relapse-free (17 %). Further, CYP2D6 metabolizer phenotypes had no significant effect on TQ AUC, and only minimal metabolism of TQ could be detected in hepatic in vitro systems.
Together, these data provide preliminary evidence that in CYP2D6 IMs, TQ efficacy in P. vivax-infected individuals is not diminished to the same extent as PQ. As there were no PMs in either the TQ or PQ treatment arms of TAF112582, no conclusions could be drawn on potential differences in PMs. These findings suggest that differential effects of CYP2D6 metabolism on TQ and PQ efficacy could be a differentiation factor between these 8-AQs, but results remain to be confirmed prospectively in the ongoing phase 3 studies.
Electronic supplementary material
The online version of this article (doi:10.1186/s12936-016-1145-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4757974  PMID: 26888075
Plasmodium vivax malaria; Tafenoquine; Primaquine; CYP2D6; Efficacy; Pharmacogenetics; Pharmacokinetics
2.  Analysis of rare variant population structure in Europeans explains differential stratification of gene-based tests 
European Journal of Human Genetics  2014;22(9):1137-1144.
There is substantial interest in the role of rare genetic variants in the etiology of complex human diseases. Several gene-based tests have been developed to simultaneously analyze multiple rare variants for association with phenotypic traits. The tests can largely be partitioned into two classes – ‘burden' tests and ‘joint' tests – based on how they accumulate evidence of association across sites. We used the empirical joint site frequency spectra of rare, nonsynonymous variation from a large multi-population sequencing study to explore the effect of realistic rare variant population structure on gene-based tests. We observed an important difference between the two test classes: their susceptibility to population stratification. Focusing on European samples, we found that joint tests, which allow variants to have opposite directions of effect, consistently showed higher levels of P-value inflation than burden tests. We determined that the differential stratification was caused by two specific patterns in the interpopulation distribution of rare variants, each correlating with inflation in one of the test classes. The pattern that inflates joint tests is more prevalent in real data, explaining the higher levels of inflation in these tests. Furthermore, we show that the different sources of inflation between tests lead to heterogeneous responses to genomic control correction and the number of variants analyzed. Our results indicate that care must be taken when interpreting joint and burden analyses of the same set of rare variants, in particular, to avoid mistaking inflated P-values in joint tests for stronger signals of true associations.
PMCID: PMC4135410  PMID: 24398795
rare variants; site frequency spectra; burden tests; population stratification; type I error
3.  An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people 
Science (New York, N.Y.)  2012;337(6090):100-104.
Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (one every 17 bases) and geographically localized, such that even with large sample sizes, rare variant catalogs will be largely incomplete. We used the observed patterns of variation to estimate population growth parameters, the proportion of variants in a given frequency class that are putatively deleterious, and mutation rates for each gene. Overall we conclude that, due to rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk.
PMCID: PMC4319976  PMID: 22604722
4.  Deep sequencing of the LRRK2 gene in 14,002 individuals reveals evidence of purifying selection and independent origin of the p.Arg1628Pro mutation in Europe 
Human Mutation  2012;33(7):1087-1098.
Genetic variation in LRRK2 predisposes to Parkinson disease (PD), which underpins its development as a therapeutic target. Here, we aimed to identify novel genotype-phenotype associations that might support developing LRRK2 therapies for other conditions. We sequenced the 51 exons of LRRK2 in cases comprising 12 common diseases (n = 9,582), and in 4,420 population controls. We identified 739 single nucleotide variants (SNVs), 62% of which were observed in only one person, including 316 novel exonic variants. We found evidence of purifying selection for the LRRK2 gene and a trend suggesting that this is more pronounced in the central (ROC-COR-kinase) core protein domains of LRRK2 than the flanking domains. Population genetic analyses revealed that LRRK2 is not especially polymorphic or differentiated in comparison to 201 other drug target genes. Amongst Europeans, we identified 17 carriers (0.13%) of pathogenic LRRK2 mutations that were not significantly enriched within any disease or in those reporting a family history of PD. Analysis of pathogenic mutations within Europe reveals that the p.Arg1628Pro (c4883G>C) mutation arose independently in Europe and Asia. Taken together, these findings demonstrate how targeted deep sequencing can help to reveal fundamental characteristics of clinically important loci.
PMCID: PMC3370131  PMID: 22415848
LRRK2; Deep sequencing; novel variants; evolution; population genetics; genotype-phenotype associations
6.  Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families 
PLoS ONE  2012;7(2):e31039.
Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09×10−5; OR = 2.21; 95%CI = 1.49–3.28) or an unselected population of 12,481 samples (p = 6.82×10−5; OR = 2.19; 95%CI = 1.347–3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.
PMCID: PMC3270040  PMID: 22312439
8.  A Genome-Wide Investigation of SNPs and CNVs in Schizophrenia 
PLoS Genetics  2009;5(2):e1000373.
We report a genome-wide assessment of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater “load” of large (>100 kb), rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens.
Author Summary
Schizophrenia is a highly heritable disease. While the drugs commonly used to treat schizophrenia offer important relief from some symptoms, other symptoms are not well treated, and the drugs cause serious adverse effects in many individuals. This has fueled intense interest over the years in identifying genetic contributors to schizophrenia. In this paper, we first show that common genetic variants, the focus of most research until recently, do not seem to have a major impact on schizophrenia predisposition. We then provide further evidence that very rare, large DNA deletions and duplications contribute to or explain a minority of schizophrenia cases. Although the small number of events identified here do not restrict focus to a finite set of molecular pathways, we do show one event that deletes a gene known to interact with DISC1, a gene known to cause psychiatric problems in one family. Such convergent findings have potential implications for the development of new therapies and patient subclassifications. We conclude that schizophrenia genetics research must turn sharply toward the identification of rare genetic contributors and that the most important tool in this effort will be complete whole-genome sequencing of patients whose clinical characteristics have been very thoroughly assessed.
PMCID: PMC2631150  PMID: 19197363

Results 1-8 (8)