PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  ALS2 mutations 
Neurology  2014;82(12):1065-1067.
Objective:
To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia.
Methods:
A combination of homozygosity mapping and whole-exome sequencing in the first family and Sanger sequencing of candidate genes in the second family were used.
Results:
Both families were found to have homozygous loss-of-function mutations in the amyotrophic lateral sclerosis 2 (juvenile) (ALS2) gene.
Conclusions:
We report generalized dystonia and cerebellar signs in association with ALS2-related disease. We suggest that the ALS2 gene should be screened for mutations in patients who present with a similar phenotype.
doi:10.1212/WNL.0000000000000254
PMCID: PMC3962990  PMID: 24562058
2.  Study of the genetic variability in a Parkinson's Disease gene: EIF4G1 
Neuroscience Letters  2012;518(1):19-22.
Highlights
► Mutations in the EIF4G1 gene have been found in patients with Parkinson's Disease (PD) [2]. ► We investigate the mutations in a familial PD cohort and in sub-Saharian Africans and Europeans. ► We failed to identify any mutation in the PD cohort. We identify the p.A502V (previously associated to PD) in Caucasians. ► Mutations in the EIF4G1 gene are a very rare cause of PD in European individuals. ► The protein can tolerate some extent of genetic variability.
Chartier-Harlin and colleagues [2] recently reported mutations in the eukaryotic translation initiation factor 4-gamma (EIF4G1) gene in families with parkinsonism. Large-scale screening found two mutations (p.R1205H and p.A502V) only in affected individuals, although their relative frequency was very low. The aim of this study was to investigate EIF4G1 parkinsonism-related variants in two separate cohorts and study coding variability across the gene. We first screened a series of familial Parkinson's Disease (PD) patients in an attempt to confirm previous results by showing segregation. Then, to determine the extent of coding variation in the gene, we first screened a cohort of sub-Saharan African individuals from the Centre d’Etude du Polymorphisme Humain – Human Genome Diversity Cell Line Panel (HGDP) [1] and then analyzed data from 5350 individuals National Heart, Lung, and Blood Institute (NHLBI) exome sequencing project. We failed to identify any PD-related mutations in the familial samples. Conversely we found the p.A502V variant in the NHLBI population. We observed a high number of coding polymorphism in the exons where the two PD variants have been previously reported. We conclude that either EIF4G1 variants are an extremely rare cause of familial PD in Caucasian cohorts, or that A502V is in fact a rare benign variant not involved in PD aetiology. Our data also suggests that the protein can tolerate some extent of variability particularly at this point of the gene.
doi:10.1016/j.neulet.2012.04.033
PMCID: PMC3769807  PMID: 22561553
Parkinson's Disease; EIF4G1
3.  Tau acts as an independent genetic risk factor in pathologically proven PD 
Neurobiology of Aging  2012;33(4):838.e7-838.e11.
MAPT has been repeatedly linked with Parkinson's disease (PD) in association studies. Although tau deposition may be seen in PD, its relevance to the pathogenesis of the condition remains unclear. The presence of tau-positive inclusions is, however, the defining feature of progressive supranuclear palsy (PSP), which may often be clinically misdiagnosed as idiopathic PD. On a genetic level, variants in MAPT are the strongest risk factor for PSP. These facts raise the question whether the MAPT association in PD results from contamination with unrecognized cases of PSP. Using only neuropathologically proven PD, we show that the MAPT association remains and is independent of the PSP Association.
doi:10.1016/j.neurobiolaging.2011.11.001
PMCID: PMC3629571  PMID: 22221882
Genetics; Association study; Parkinson's disease; MAPT; Tau; Progressive supranuclear palsy; PD; PSP
4.  A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies 
JAMA neurology  2013;70(6):10.1001/jamaneurol.2013.1925.
Importance
While mutations in glucocerebrosidase (GBA1) are associated with an increased risk for Parkinson disease (PD), it is important to establish whether such mutations are also a common risk factor for other Lewy body disorders.
Objective
To establish whether GBA1 mutations are a risk factor for dementia with Lewy bodies (DLB).
Design
We compared genotype data on patients and controls from 11 centers. Data concerning demographics, age at onset, disease duration, and clinical and pathological features were collected when available. We conducted pooled analyses using logistic regression to investigate GBA1 mutation carrier status as predicting DLB or PD with dementia status, using common control subjects as a reference group. Random-effects meta-analyses were conducted to account for additional heterogeneity.
Setting
Eleven centers from sites around the world performing genotyping.
Participants
Seven hundred twenty-one cases met diagnostic criteria for DLB and 151 had PD with dementia. We compared these cases with 1962 controls from the same centers matched for age, sex, and ethnicity.
Main Outcome Measures
Frequency of GBA1 mutations in cases and controls.
Results
We found a significant association between GBA1 mutation carrier status and DLB, with an odds ratio of 8.28 (95% CI, 4.78–14.88). The odds ratio for PD with dementia was 6.48 (95% CI, 2.53–15.37). The mean age at diagnosis of DLB was earlier in GBA1 mutation carriers than in noncarriers (63.5 vs 68.9 years; P<.001), with higher disease severity scores.
Conclusions and Relevance
Mutations in GBA1 are a significant risk factor for DLB. GBA1 mutations likely play an even larger role in the genetic etiology of DLB than in PD, providing insight into the role of glucocerebrosidase in Lewy body disease.
doi:10.1001/jamaneurol.2013.1925
PMCID: PMC3841974  PMID: 23588557
5.  Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research 
PLoS ONE  2012;7(8):e43099.
Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community.
doi:10.1371/journal.pone.0043099
PMCID: PMC3428297  PMID: 22952635

Results 1-5 (5)