PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (59)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Anterior temporal lobe degeneration produces widespread network-driven dysfunction 
Brain  2013;136(10):2979-2991.
The neural organization of semantic memory remains much debated. A ‘distributed-only’ view contends that semantic knowledge is represented within spatially distant, modality-selective primary and association cortices. Observations in semantic variant primary progressive aphasia have inspired an alternative model featuring the anterior temporal lobe as an amodal hub that supports semantic knowledge by linking distributed modality-selective regions. Direct evidence has been lacking, however, to support intrinsic functional interactions between an anterior temporal lobe hub and upstream sensory regions in humans. Here, we examined the neural networks supporting semantic knowledge by performing a multimodal brain imaging study in healthy subjects and patients with semantic variant primary progressive aphasia. In healthy subjects, the anterior temporal lobe showed intrinsic connectivity to an array of modality-selective primary and association cortices. Patients showed focal anterior temporal lobe degeneration but also reduced physiological integrity throughout distributed modality-selective regions connected with the anterior temporal lobe in healthy controls. Physiological deficits outside the anterior temporal lobe correlated with scores on semantic tasks and with anterior temporal subregion atrophy, following domain-specific and connectivity-based predictions. The findings provide a neurophysiological basis for the theory that semantic processing is orchestrated through interactions between a critical anterior temporal lobe hub and modality-selective processing nodes.
doi:10.1093/brain/awt222
PMCID: PMC3857932  PMID: 24072486
anterior temporal lobe; semantic dementia; cognition; semantics; functional neuroimaging
2.  The functional oculomotor network and saccadic cognitive control in healthy elders 
NeuroImage  2014;95:61-68.
Decline in executive function is the most common age-associated cognitive deficit and may be a risk factor for neurodegenerative disease. The antisaccade (AS) task involves inhibition of a prepotent visuomotor response and is a well-validated executive function test in aging and neurodegeneration. We investigated the functional connectivity of the cortical oculomotor network during successful AS performance in healthy elders. Elevated BOLD activity in the right lateral frontal eye field (rlatFEF), a region linked to volume loss in individuals with impaired AS performance, was associated with worse AS performance and weaker network efficiency. In contrast, hub integrity of the right dorsolateral prefrontal cortex (rDLPFC) and anterior cingulate cortex (rACC) was associated with better AS performance. These data suggest that while several right lateral frontal regions are central nodes in the oculomotor network, the rlatFEF demonstrates early neural aberrations and the rDLPFC and rACC continue to support inhibitory cognitive control in healthy elders. We conclude that alterations in AS task functional connectivity, quantified as hub and network efficiency, may be clinically-relevant biomarkers of cognitive decline in executive functioning.
doi:10.1016/j.neuroimage.2014.03.051
PMCID: PMC4043928  PMID: 24675647
executive function; graph theory; aging; fMRI; antisaccade
3.  Intrinsic connectivity network disruption in progressive supranuclear palsy 
Annals of neurology  2013;73(5):603-616.
Objective
Progressive supranuclear palsy (PSP) has been conceptualized as a large-scale network disruption, but the specific network targeted has not been fully characterized. We sought to delineate the affected network in patients with clinical PSP.
Methods
Using task-free fMRI, we mapped intrinsic connectivity to the dorsal midbrain tegmentum (dMT), a region which shows focal atrophy in PSP. Two healthy control groups (1 young, 1 older) were used to define and replicate the normal connectivity pattern, and patients with PSP were compared to an independent matched healthy control group on measures of network connectivity.
Results
Healthy young and older subjects showed a convergent pattern of connectivity to the dMT, including brainstem, cerebellar, diencephalic, basal ganglia, and cortical regions involved in skeletal, oculomotor, and executive control. Patients with PSP showed significant connectivity disruptions within this network, particularly within cortico-subcortical and cortico-brainstem interactions. Patients with more severe functional impairment showed lower mean dMT network connectivity scores.
Interpretation
This study defines a PSP-related intrinsic connectivity network in the healthy brain and demonstrates the sensitivity of network-based imaging methods to PSP-related physiological and clinical changes.
doi:10.1002/ana.23844
PMCID: PMC3732833  PMID: 23536287
4.  Frontotemporal dementia and its subtypes: a genome-wide association study 
Ferrari, Raffaele | Hernandez, Dena G | Nalls, Michael A | Rohrer, Jonathan D | Ramasamy, Adaikalavan | Kwok, John B J | Dobson-Stone, Carol | Brooks, William S | Schofield, Peter R | Halliday, Glenda M | Hodges, John R | Piguet, Olivier | Bartley, Lauren | Thompson, Elizabeth | Haan, Eric | Hernández, Isabel | Ruiz, Agustín | Boada, Mercè | Borroni, Barbara | Padovani, Alessandro | Cruchaga, Carlos | Cairns, Nigel J | Benussi, Luisa | Binetti, Giuliano | Ghidoni, Roberta | Forloni, Gianluigi | Galimberti, Daniela | Fenoglio, Chiara | Serpente, Maria | Scarpini, Elio | Clarimón, Jordi | Lleó, Alberto | Blesa, Rafael | Waldö, Maria Landqvist | Nilsson, Karin | Nilsson, Christer | Mackenzie, Ian R A | Hsiung, Ging-Yuek R | Mann, David M A | Grafman, Jordan | Morris, Christopher M | Attems, Johannes | Griffiths, Timothy D | McKeith, Ian G | Thomas, Alan J | Pietrini, P | Huey, Edward D | Wassermann, Eric M | Baborie, Atik | Jaros, Evelyn | Tierney, Michael C | Pastor, Pau | Razquin, Cristina | Ortega-Cubero, Sara | Alonso, Elena | Perneczky, Robert | Diehl-Schmid, Janine | Alexopoulos, Panagiotis | Kurz, Alexander | Rainero, Innocenzo | Rubino, Elisa | Pinessi, Lorenzo | Rogaeva, Ekaterina | George-Hyslop, Peter St | Rossi, Giacomina | Tagliavini, Fabrizio | Giaccone, Giorgio | Rowe, James B | Schlachetzki, J C M | Uphill, James | Collinge, John | Mead, S | Danek, Adrian | Van Deerlin, Vivianna M | Grossman, Murray | Trojanowsk, John Q | van der Zee, Julie | Deschamps, William | Van Langenhove, Tim | Cruts, Marc | Van Broeckhoven, Christine | Cappa, Stefano F | Le Ber, Isabelle | Hannequin, Didier | Golfier, Véronique | Vercelletto, Martine | Brice, Alexis | Nacmias, Benedetta | Sorbi, Sandro | Bagnoli, Silvia | Piaceri, Irene | Nielsen, Jørgen E | Hjermind, Lena E | Riemenschneider, Matthias | Mayhaus, Manuel | Ibach, Bernd | Gasparoni, Gilles | Pichler, Sabrina | Gu, Wei | Rossor, Martin N | Fox, Nick C | Warren, Jason D | Spillantini, Maria Grazia | Morris, Huw R | Rizzu, Patrizia | Heutink, Peter | Snowden, Julie S | Rollinson, Sara | Richardson, Anna | Gerhard, Alexander | Bruni, Amalia C | Maletta, Raffaele | Frangipane, Francesca | Cupidi, Chiara | Bernardi, Livia | Anfossi, Maria | Gallo, Maura | Conidi, Maria Elena | Smirne, Nicoletta | Rademakers, Rosa | Baker, Matt | Dickson, Dennis W | Graff-Radford, Neill R | Petersen, Ronald C | Knopman, David | Josephs, Keith A | Boeve, Bradley F | Parisi, Joseph E | Seeley, William W | Miller, Bruce L | Karydas, Anna M | Rosen, Howard | van Swieten, John C | Dopper, Elise G P | Seelaar, Harro | Pijnenburg, Yolande AL | Scheltens, Philip | Logroscino, Giancarlo | Capozzo, Rosa | Novelli, Valeria | Puca, Annibale A | Franceschi, M | Postiglione, Alfredo | Milan, Graziella | Sorrentino, Paolo | Kristiansen, Mark | Chiang, Huei-Hsin | Graff, Caroline | Pasquier, Florence | Rollin, Adeline | Deramecourt, Vincent | Lebert, Florence | Kapogiannis, Dimitrios | Ferrucci, Luigi | Pickering-Brown, Stuart | Singleton, Andrew B | Hardy, John | Momeni, Parastoo
Lancet neurology  2014;13(7):686-699.
Summary
Background
Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
Methods
We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. All participants had European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) and suggestive single-nucleotide polymorphisms.
Findings
We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8) that encompassed the HLA locus at 6p21.3 in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC, for the behavioural FTD subtype. Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation incis.
Interpretation
Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and possibly to shed light on the pathomechanisms contributing to FTD.
Funding
The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/ MRC Centre on Parkinson’s disease, Alzheimer’s Research UK, and Texas Tech University Health Sciences Center.
doi:10.1016/S1474-4422(14)70065-1
PMCID: PMC4112126  PMID: 24943344
5.  Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation 
Acta neuropathologica  2013;125(4):581-593.
Post-translational modifications play a key role in tau protein aggregation and related neurodegeneration. Because hyperphosphorylation alone does not necessarily cause tau aggregation, other post-translational modifications have been recently explored. Tau acetylation promotes aggregation and inhibits tau’s ability to stabilize microtubules. Recent studies have shown co-localization of acetylated and phosphorylated tau in AD and some 4R tauopathies. We developed a novel monoclonal antibody against acetylated tau at lysine residue 274, which recognizes both 3R and 4R tau, and used immunohistochemistry and immunofluorescence to probe 22 cases, including AD and another eight familial or sporadic tauopathies. Acetylated tau was identified in all tauopathies except argyrophilic grain disease (AGD). AGD is an age-associated, common but atypical 4R tauopathy, not always associated with clinical progression. Pathologically, AGD is characterized by neuropil grains, pre-neurofibrillary tangles, and oligodendroglial coiled bodies, all recognized by phospho-tau antibodies. The lack of acetylated tau in these inclusions suggests that AGD represents a distinctive tauopathy. Our data converge with previous findings to raise the hypothesis that AGD could play a protective role against the spread of AD-related tau pathology. Tau acetylation as a key modification for the propagation tau toxicity deserves further investigation.
doi:10.1007/s00401-013-1080-2
PMCID: PMC3692283  PMID: 23371364
tau; pathology; autopsy; acetylation; immunohistochemistry; human
6.  Distinct tau prion strains propagate in cells and mice and define different tauopathies 
Neuron  2014;82(6):1271-1288.
Summary
Prion-like propagation of tau aggregation may underlie the stereotyped progression of neurodegenerative tauopathies. True prions stably maintain unique conformations (“strains”) in vivo that link structure to patterns of pathology. We now find that tau meets this criterion. Stably expressed tau repeat domain indefinitely propagates distinct amyloid conformations in a clonal fashion in culture. Reintroduction of tau from these lines into naïve cells re-establishes identical clones. We produced two strains in vitro that induce distinct pathologies in vivo as determined by successive inoculations into three generations of transgenic mice. Immunopurified tau from these mice re-creates the original strains in culture. We used the cell system to isolate tau strains from 29 patients with 5 different tauopathies, finding that different diseases are associated with different sets of strains. Tau thus demonstrates essential characteristics of a prion. This may explain the phenotypic diversity of tauopathies and could enable more effective diagnosis and therapy.
doi:10.1016/j.neuron.2014.04.047
PMCID: PMC4171396  PMID: 24857020
7.  Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia 
Brain  2014;137(6):1621-1626.
Behavioural variant frontotemporal dementia is characterized by an increase in primary reward-seeking behaviours, including pursuit of food, drug, and sexual rewards. Perry et al. reveal that increased reward-seeking correlates with lower volume in the right ventral putamen and pallidum, which are known reward circuit structures.
Behavioural variant frontotemporal dementia is characterized by abnormal responses to primary reward stimuli such as food, sex and intoxicants, suggesting abnormal functioning of brain circuitry mediating reward processing. The goal of this analysis was to determine whether abnormalities in reward-seeking behaviour in behavioural variant frontotemporal dementia are correlated with atrophy in regions known to mediate reward processing. Review of case histories in 103 patients with behavioural variant frontotemporal dementia identified overeating or increased sweet food preference in 80 (78%), new or increased alcohol or drug use in 27 (26%), and hypersexuality in 17 (17%). For each patient, a primary reward-seeking score of 0–3 was created with 1 point given for each target behaviour (increased seeking of food, drugs, or sex). Voxel-based morphometry performed in 91 patients with available imaging revealed that right ventral putamen and pallidum atrophy correlated with higher reward-seeking scores. Each of the reward-related behaviours involved partially overlapping right hemisphere reward circuit regions including putamen, globus pallidus, insula and thalamus. These findings indicate that in some patients with behavioural variant frontotemporal dementia, low volume of subcortical reward-related structures is associated with increased pursuit of primary rewards, which may be a product of increased thalamocortical feedback.
doi:10.1093/brain/awu075
PMCID: PMC4032100  PMID: 24740987
frontotemporal dementia; reward processing; hypersexuality; overeating; alcohol
8.  Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia 
Nature medicine  2014;20(12):1444-1451.
Many neurodegenerative diseases, such as frontotemporal dementia (FTD), are associated with behavioral deficits, but the anatomical and molecular bases remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to imbalance between Ca2+-permeable and -impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA (miR-124), whose abundance was markedly decreased in the superficial layers of cerebral cortex of FTD mice. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and iPSC-derived neurons of subjects with behavioral variant FTD. Moreover, miR-124 expression in the medial prefrontal cortex decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of Gria2 also alleviated social impairments in FTD mice. Our results identify a novel mechanism involving miR-124 and AMAPRs in regulating social behavior in FTD and suggest a potential therapeutic avenue.
doi:10.1038/nm.3717
PMCID: PMC4257887  PMID: 25401692
AMPA receptor; CHMP2B; frontotemporal dementia; microRNA; neurodegeneration; social behavior
9.  Patterns of striatal degeneration in frontotemporal dementia 
Behavioral variant frontotemporal dementia and semantic dementia have been associated with striatal degeneration, but few studies have delineated striatal subregion volumes in vivo or related them to clinical phenotype. We traced caudate, putamen, and nucleus accumbens on MR images to quantify volumes of these structures in behavioral variant frontotemporal dementia, semantic dementia, Alzheimer’s disease, and healthy controls (n = 12 per group). We further related these striatal volumes to clinical deficits and neuropathological findings in a subset of patients. Behavioral variant frontotemporal dementia and semantic dementia showed significant overall striatal atrophy compared with controls. Moreover, behavioral variant frontotemporal dementia showed panstriatal degeneration whereas semantic dementia featured a more focal pattern involving putamen and accumbens. Right-sided striatal atrophy, especially in the putamen, correlated with overall behavioral symptom severity and with specific behavioral domains. At autopsy, patients with behavioral variant frontotemporal dementia and semantic dementia showed striking and severe tau or TAR DNA-binding protein of 43 kDa pathology, especially in ventral parts of the striatum. These results demonstrate that ventral striatum degeneration is a prominent shared feature in behavioral variant frontotemporal dementia and semantic dementia and may contribute to social-emotional deficits common to both disorders.
doi:10.1097/WAD.0b013e31824a7df4
PMCID: PMC3389579  PMID: 22367382
10.  A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques 
Introduction
Although TDP-43 is the main constituent of the ubiquitinated cytoplasmic inclusions in the most common forms of frontotemporal lobar degeneration, TARDBP mutations are not a common cause of familial frontotemporal dementia, especially in the absence of motor neuron disease.
Results
We describe a pedigree presenting with a complex autosomal dominant disease, with a heterogeneous clinical phenotype, comprising unspecified dementia, parkinsonism, frontotemporal dementia and motor neuron disease. Genetic analyses identified a novel P112H TARDBP double variation located in exon 3 coding for the first RNA recognition motif of the protein (RRM1). This double mutation is probably pathogenic based on neuropathological findings, in silico prediction analysis and exome sequencing. The two autopsied siblings described here presented with frontotemporal dementia involving multiple cognitive domains and behavior but lacking symptoms of motor neuron disease throughout the disease course. The siblings presented with strikingly similar, although atypical, neuropathological features, including an unclassifiable TDP-43 inclusion pattern, a high burden of tau-negative β-amyloid neuritic plaques with an AD-like biochemical profile, and an unclassifiable 4-repeat tauopathy. The co-occurrence of multiple protein inclusions points to a pathogenic mechanism that facilitates misfolded protein interaction and aggregation or a loss of TDP-43 function that somehow impairs protein clearance.
Conclusions
TARDBP mutation screening should be considered in familial frontotemporal dementia cases, even without signs or symptoms of motor neuron disease, especially when other more frequent causes of genetic frontotemporal dementia (i.e. GRN, C9ORF72, MAPT) have been excluded and when family history is complex and includes parkinsonism, motor neuron disease and frontotemporal dementia. Further investigations in this family may provide insight into the physiological functions of TARDBP.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-015-0190-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s40478-015-0190-6
PMCID: PMC4382926  PMID: 25853458
Frontotemporal lobar degeneration; Frontotemporal dementia; Motor neuron disease; TDP-43; TARDBP; Postmortem
11.  Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD 
The Journal of Experimental Medicine  2014;211(10):1937-1945.
Ward et al. report retinal thinning in humans with progranulin mutations that precedes dementia onset, and an age-dependent retinal neurodegenerative phenotype in progranulin null mice. Nuclear depletion of TDP-43 precedes retinal neuronal loss and is accompanied by reduced GTPase Ran, with overexpression of Ran restoring nuclear TDP-43 and neuronal survival.
Frontotemporal dementia (FTD) is the most common cause of dementia in people under 60 yr of age and is pathologically associated with mislocalization of TAR DNA/RNA binding protein 43 (TDP-43) in approximately half of cases (FLTD-TDP). Mutations in the gene encoding progranulin (GRN), which lead to reduced progranulin levels, are a significant cause of familial FTLD-TDP. Grn-KO mice were developed as an FTLD model, but lack cortical TDP-43 mislocalization and neurodegeneration. Here, we report retinal thinning as an early disease phenotype in humans with GRN mutations that precedes dementia onset and an age-dependent retinal neurodegenerative phenotype in Grn-KO mice. Retinal neuron loss in Grn-KO mice is preceded by nuclear depletion of TDP-43 and accompanied by reduced expression of the small GTPase Ran, which is a master regulator of nuclear import required for nuclear localization of TDP-43. In addition, TDP-43 regulates Ran expression, likely via binding to its 3′-UTR. Augmented expression of Ran in progranulin-deficient neurons restores nuclear TDP-43 levels and improves their survival. Our findings establish retinal neurodegeneration as a new phenotype in progranulin-deficient FTLD, and suggest a pathological loop involving reciprocal loss of Ran and nuclear TDP-43 as an underlying mechanism.
doi:10.1084/jem.20140214
PMCID: PMC4172214  PMID: 25155018
12.  Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography 
Introduction
Group comparisons demonstrate greater visuospatial and memory deficits and temporoparietal-predominant degeneration on neuroimaging in patients with corticobasal syndrome (CBS) found to have Alzheimer’s disease (AD) pathology versus those with underlying frontotemporal lobar degeneration (FTLD). The value of these features in predicting underlying AD pathology in individual patients is unknown. The goal of this study is to evaluate the utility of modified clinical criteria and visual interpretations of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) for predicting amyloid deposition (as a surrogate of Alzheimer’s disease neuropathology) in patients presenting with CBS.
Methods
In total, 25 patients meeting CBS core criteria underwent amyloid (Pittsburgh compound B; PIB) PET scans. Clinical records, MRI, and FDG scans were reviewed blinded to PIB results. Modified clinical criteria were used to classify CBS patients as temporoparietal variant CBS (tpvCBS) or frontal variant CBS (fvCBS). MRI and FDG-PET were classified based on the predominant atrophy/hypometabolism pattern (frontal or temporoparietal).
Results
A total of 9 out of 13 patients classified as tpvCBS were PIB+, compared to 2out of 12 patients classified as fvCBS (P < 0.01, sensitivity 82%, specificity 71% for PIB+ status). Visual MRI reads had 73% sensitivity and 46% specificity for PIB+ status with moderate intra-rater reliability (Cohen’s kappa = 0.42). Visual FDG reads had higher sensitivity (91%) for PIB+ status with perfect intra-rater reliability (kappa = 1.00), though specificity was low (50%). PIB results were confirmed in all 8 patients with available histopathology (3 PIB+ with confirmed AD, 5 PIB- with FTLD).
Conclusions
Splitting CBS patients into frontal or temporoparietal clinical variants can help predict the likelihood of underlying AD, but criteria require further refinement. Temporoparietal-predominant neuroimaging patterns are sensitive but not specific for AD.
Electronic supplementary material
The online version of this article (doi:10.1186/s13195-014-0093-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s13195-014-0093-y
PMCID: PMC4346122  PMID: 25733984
13.  TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia 
Acta neuropathologica  2014;127(3):397-406.
Variants in transmembrane protein 106 B (TMEM106B) modify the disease penetrance of frontotemporal dementia (FTD) in carriers of progranulin (GRN) mutations. We investigated whether TMEM106B is also a genetic modifier of disease in carriers of chromosome 9 open reading frame 72 (C9ORF72) expansions. We assessed the genotype of 325 C9ORF72 expansion carriers (cohort 1), 586 FTD patients lacking C9ORF72 expansions (with or without motor neuron disease [MND]; cohort 2), and a total of 1,302 controls for TMEM106B variants (rs3173615 and rs1990622) using MassArray iPLEX and Taqman genotyping assays. For our primary analysis, we focused on functional variant rs3173615, and employed a recessive genotypic model. In cohort 1, patients with C9ORF72 expansions showed a significantly reduced frequency of carriers homozygous for the minor allele as compared to controls (11.9% versus 19.1%, odds ratio (OR): 0.57, p=0.014; same direction as carriers of GRN mutations). The strongest evidence was provided by FTD patients (OR: 0.33, p=0.009) followed by FTD/MND patients (OR: 0.38, p=0.017), whereas no significant difference was observed in MND patients (OR: 0.85, p=0.55). In cohort 2, the frequency of carriers homozygous for the minor allele was not significantly reduced in patients as compared to controls (OR: 0.77, p=0.079); however, a significant reduction was observed when focusing on those patients with frontotemporal lobar degeneration and TAR DNA-binding protein 43 inclusions (FTLD-TDP; OR: 0.26, p<0.001).
Our study identifies TMEM106B as the first genetic factor modifying disease presentation in C9ORF72 expansion carriers. Homozygosity for the minor allele protects carriers from developing FTD, but not from developing MND; similar effects are seen in FTLD-TDP patients with yet unknown genetic causes. These new findings show that the protective effects of TMEM106B are not confined to carriers of GRN mutations, and might be relevant for prognostic testing, and as a promising therapeutic target for the entire spectrum of FTLD-TDP.
doi:10.1007/s00401-013-1240-4
PMCID: PMC3944829  PMID: 24385136
C9ORF72; TMEM106B; frontotemporal dementia; motor neuron disease; amyotrophic lateral sclerosis; disease modifier
14.  ApoE and TDP-43 neuropathology in two siblings with familial FTLD-motor neuron disease 
Neurocase  2012;19(3):295-301.
Frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) is characterized by neuronal cytoplasmic inclusions containing TDP-43. Apolipoprotein E4 (apoE4), derived from the apoE ε4 allele, enhances brain atrophy in FTLD through unknown mechanisms. Here, we studied two siblings with C9ORF72-linked familial FTLD-MND, an apoE ε4 homozygote and an apoE ε3 homozygote. The apoE ε4 homozygote had more cognitive-behavioral symptoms, fronto-insulo-temporal atrophy, and apoE fragments and aggregates in the anterior cingulate cortex. ApoE formed complexes with TDP-43 that were more abundant in the apoE ε4 homozygote. Although differences seen in a sibling pair could arise due to chance, these findings raise the possibility that apoE4 exacerbates brain pathology in FTLD through formation of neurotoxic apoE fragments and interactions with TDP-43.
doi:10.1080/13554794.2012.667124
PMCID: PMC3655113  PMID: 22512241
Apolipoprotein E; TDP-43; Frontotemporal dementia; Motor neuron disease; Neuropathology
15.  Predicting regional neurodegeneration from the healthy brain functional connectome 
Neuron  2012;73(6):1216-1227.
Summary
Neurodegenerative diseases target large-scale neural networks. Four competing mechanistic hypotheses have been proposed to explain network-based disease patterning: nodal stress, transneuronal spread, trophic failure, and shared vulnerability. Here, we used task-free fMRI to derive the healthy intrinsic connectivity patterns seeded by brain regions vulnerable to any of five distinct neurodegenerative diseases. These data enabled us to investigate how intrinsic connectivity in health predicts region-by-region vulnerability to disease. For each illness, specific regions emerged as critical network “epicenters” whose normal connectivity profiles most resembled the disease-associated atrophy pattern. Graph theoretical analyses in healthy subjects revealed that regions with higher total connectional flow and, more consistently, shorter functional paths to the epicenters, showed greater disease-related vulnerability. These findings best fit a transneuronal spread model of network-based vulnerability. Molecular pathological approaches may help clarify what makes each epicenter vulnerable to its targeting disease and how toxic protein species travel between networked brain structures.
doi:10.1016/j.neuron.2012.03.004
PMCID: PMC3361461  PMID: 22445348
fMRI; neurodegeneration; network; functional connectivity; Alzheimer’s disease; frontotemporal dementia
16.  Selective Frontoinsular von Economo Neuron and Fork Cell Loss in Early Behavioral Variant Frontotemporal Dementia 
Cerebral Cortex (New York, NY)  2011;22(2):251-259.
Behavioral variant frontotemporal dementia (bvFTD) erodes complex social–emotional functions as the anterior cingulate cortex (ACC) and frontoinsula (FI) degenerate, but the early vulnerable neuron within these regions has remained uncertain. Previously, we demonstrated selective loss of ACC von Economo neurons (VENs) in bvFTD. Unlike ACC, FI contains a second conspicuous layer 5 neuronal morphotype, the fork cell, which has not been previously examined. Here, we investigated the selectivity, disease-specificity, laterality, timing, and symptom relevance of frontoinsular VEN and fork cell loss in bvFTD. Blinded, unbiased, systematic sampling was used to quantify bilateral FI VENs, fork cells, and neighboring neurons in 7 neurologically unaffected controls (NC), 5 patients with Alzheimer's disease (AD), and 9 patients with bvFTD, including 3 who died of comorbid motor neuron disease during very mild bvFTD. bvFTD showed selective FI VEN and fork cell loss compared with NC and AD, whereas in AD no significant VEN or fork cell loss was detected. Although VEN and fork cell losses in bvFTD were often asymmetric, no group-level hemispheric laterality effects were identified. Right-sided VEN and fork cell losses, however, correlated with each other and with anatomical, functional, and behavioral severity. This work identifies region-specific neuronal targets in early bvFTD.
doi:10.1093/cercor/bhr004
PMCID: PMC3256403  PMID: 21653702
Alzheimer's disease; behavioral variant frontotemporal dementia; fork cell; frontoinsula; von Economo neuron
17.  One-year test-retest reliability of intrinsic connectivity network fMRI in older adults 
NeuroImage  2012;61(4):1471-1483.
“Resting-state” or task-free fMRI can assess intrinsic connectivity network (ICN) integrity in health and disease, suggesting a potential for use of these methods as disease-monitoring biomarkers. Numerous analytical options are available, including model-driven ROI-based correlation analysis and model-free, independent component analysis (ICA). High test-retest reliability will be a necessary feature of a successful ICN biomarker, yet available reliability data remains limited. Here, we examined ICN fMRI test-retest reliability in 24 healthy older subjects scanned roughly one year apart. We focused on the salience network, a disease-relevant ICN not previously subjected to reliability analysis. Most ICN analytical methods proved reliable (intraclass coefficients > 0.4) and could be further improved by wavelet analysis. Seed-based ROI correlation analysis showed high map-wise reliability, whereas graph theoretical measures and temporal concatenation group ICA produced the most reliable individual unit-wise outcomes. Including global signal regression in ROI-based correlation analyses reduced reliability. Our study provides a direct comparison between the most commonly used ICN fMRI methods and potential guidelines for measuring intrinsic connectivity in aging control and patient populations over time.
doi:10.1016/j.neuroimage.2012.03.027
PMCID: PMC4226138  PMID: 22446491
18.  Neurodegenerative disease phenotypes in carriers of MAPT p.A152T, a risk factor for frontotemporal dementia spectrum disorders and Alzheimer's disease 
Alzheimer disease and associated disorders  2013;27(4):10.1097/WAD.0b013e31828cc357.
Recently, Coppola and colleagues demonstrated that a rare MAPT sequence variant, c.454G>A (p.A152T), significantly increases the risk of frontotemporal dementia (FTD) spectrum disorders and Alzheimer's disease (AD) in a screen of 15,369 subjects1. We describe clinical features of 9 patients with neurodegenerative disease (4 women) harboring p.A152T, aged 51 to 79 years at symptom onset. Seven developed FTD spectrum clinical syndromes, including progressive supranuclear palsy syndrome (PSP, n=2), behavioral variant FTD (bvFTD, n=1), nonfluent variant primary progressive aphasia (nfvPPA, n=2), and corticobasal syndrome (CBS, n=2); two patients were diagnosed with clinical AD. Thus, MAPT p.A152T is associated with a variety of FTD spectrum clinical presentations, although patients with clinical AD are also identified. These data warrant larger studies with clinicopathological correlation to elucidate the influence of this genetic variant on neurodegenerative disease.
doi:10.1097/WAD.0b013e31828cc357
PMCID: PMC3796183  PMID: 23518664
All Cognitive Disorders/Dementia; Alzheimer's disease; Frontotemporal Dementia; Corticobasal degeneration; Progressive Supranuclear Palsy
19.  Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene 
Background
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are causative for frontotemporal dementia (FTD) and motor neuron disease (MND). Substantial phenotypic heterogeneity has been described in patients with these expansions. We set out to identify genetic modifiers of disease risk, age at onset, and survival after onset that may contribute to this clinical variability.
Results
We examined a cohort of 330 C9ORF72 expansion carriers and 374 controls. In these individuals, we assessed variants previously implicated in FTD and/or MND; 36 variants were included in our analysis. After adjustment for multiple testing, our analysis revealed three variants significantly associated with age at onset (rs7018487 [UBAP1; p-value = 0.003], rs6052771 [PRNP; p-value = 0.003], and rs7403881 [MT-Ie; p-value = 0.003]), and six variants significantly associated with survival after onset (rs5848 [GRN; p-value = 0.001], rs7403881 [MT-Ie; p-value = 0.001], rs13268953 [ELP3; p-value = 0.003], the epsilon 4 allele [APOE; p-value = 0.004], rs12608932 [UNC13A; p-value = 0.003], and rs1800435 [ALAD; p-value = 0.003]).
Conclusions
Variants identified through this study were previously reported to be involved in FTD and/or MND, but we are the first to describe their effects as potential disease modifiers in the presence of a clear pathogenic mutation (i.e. C9ORF72 repeat expansion). Although validation of our findings is necessary, these variants highlight the importance of protein degradation, antioxidant defense and RNA-processing pathways, and additionally, they are promising targets for the development of therapeutic strategies and prognostic tests.
Electronic supplementary material
The online version of this article (doi:10.1186/1750-1326-9-38) contains supplementary material, which is available to authorized users.
doi:10.1186/1750-1326-9-38
PMCID: PMC4190282  PMID: 25239657
C9ORF72; Frontotemporal dementia; Motor neuron disease; Genetic modifier; Repeat expansion
20.  Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS 
Neurobiology of aging  2013;34(9):2235.e11-2235.e13.
The nuclear protein fused in sarcoma (FUS) is found in cytoplasmic inclusions in a subset of patients with the neurodegenerative disorder frontotemporal lobar degeneration (FTLD-FUS). FUS contains a methylated arginine-glycine-glycine domain which is required for transport into the nucleus. Recent findings have shown that this domain is hypomethylated in patients with FTLD-FUS. To determine if the cause of hypomethylation is the result of mutations in protein N-arginine methyltransferases (PRMTs), we selected 3 candidate genes (PRMT1, PRMT3 and PRMT8) and performed complete sequencing analysis and real-time PCR mRNA expression analysis in 20 FTLD-FUS cases. No mutations or statistically significant changes in expression were observed in our patient samples, suggesting that defects in PRMTs are not the cause of FTLD-FUS.
doi:10.1016/j.neurobiolaging.2013.04.004
PMCID: PMC3683824  PMID: 23635657
21.  TDP-43 Frontotemporal Lobar Degeneration and Autoimmune Disease 
Journal of neurology, neurosurgery, and psychiatry  2013;84(9):10.1136/jnnp-2012-304644.
Background
The aetiology and pathogenesis of non-genetic forms of frontotemporal dementia (FTD) is unknown and even with the genetic forms of FTD, pathogenesis remains elusive. Given the association between systemic inflammation and other neurodegenerative processes, links between autoimmunity and FTD need to be explored.
Objective
To describe the prevalence of systemic autoimmune disease in semantic variant primary progressive aphasia (svPPA), a clinical cohort, and in progranulin (PGRN) mutation carriers compared to neurologically healthy normal controls (NC) and Alzheimer’s disease (AD) as dementia controls.
Design
Case control.
Setting
Academic medical centres.
Participants
129 svPPA, 39 PGRN, 186 NC, and 158 AD patients underwent chart review for autoimmune conditions. A large subset of svPPA, PGRN, and NC cohorts underwent serum analysis for tumor necrosis factor α (TNF-α) levels.
Outcome Measures
Chi-square comparison of autoimmune prevalence and follow up logistic regression.
Results
There was a significantly increased risk of autoimmune disorders clustered around inflammatory arthritides, cutaneous disorders, and gastrointestinal conditions in the svPPA and PGRN cohorts. Elevated TNF-α levels were observed in svPPA and PGRN compared to NC.
Conclusions
svPPA and PGRN are associated with increased prevalence of specific and related autoimmune diseases compared to NC and AD. These findings suggest a unique pattern of systemic inflammation in svPPA and PGRN and open new research avenues for understanding and treating disorders associated with underlying transactive response DNA-binding protein 43 (TDP-43) aggregation.
doi:10.1136/jnnp-2012-304644
PMCID: PMC3840954  PMID: 23543794
22.  Rivastigmine is Associated with Restoration of Left Frontal Brain Activity in Parkinson’s Disease 
Objective
To investigate how acetylcholinesterase inhibitor (ChEI) treatment impacts brain function in Parkinson’s disease (PD).
Methods
Twelve patients with PD and either dementia or mild cognitive impairment underwent task-free functional magnetic resonance imaging before and after three months of ChEI treatment and were compared to 15 age and sex matched neurologically healthy controls. Regional spontaneous brain activity was measured using the fractional amplitude of low frequency fluctuations.
Results
At baseline, patients showed reduced spontaneous brain activity in regions important for motor control (e.g., caudate, supplementary motor area, precentral gyrus, thalamus), attention and executive functions (e.g., lateral prefrontal cortex), and episodic memory (e.g., precuneus, angular gyrus, hippocampus). After treatment, the patients showed a similar but less extensive pattern of reduced spontaneous brain activity relative to controls. Spontaneous brain activity deficits in the left premotor cortex, inferior frontal gyrus, and supplementary motor area were restored such that the activity was increased post-treatment compared to baseline and was no longer different from controls. Treatment-related increases in left premotor and inferior frontal cortex spontaneous brain activity correlated with parallel reaction time improvement on a test of controlled attention.
Conclusions
PD patients with cognitive impairment show numerous regions of decreased spontaneous brain function compared to controls, and rivastigmine is associated with performance-related normalization in left frontal cortex function.
doi:10.1002/mds.25575
PMCID: PMC4001926  PMID: 23847120
acetylcholine (D02.092.211.111); magnetic resonance imaging functional (E01.370.350.825.500); attention (F02.830.104.214); Acetylcholinesterase Inhibitors (D27.505.519.389.275) executive control (F02.463.217)
23.  Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease 
Brain  2010;133(5):1352-1367.
Resting-state or intrinsic connectivity network functional magnetic resonance imaging provides a new tool for mapping large-scale neural network function and dysfunction. Recently, we showed that behavioural variant frontotemporal dementia and Alzheimer’s disease cause atrophy within two major networks, an anterior ‘Salience Network’ (atrophied in behavioural variant frontotemporal dementia) and a posterior ‘Default Mode Network’ (atrophied in Alzheimer’s disease). These networks exhibit an anti-correlated relationship with each other in the healthy brain. The two diseases also feature divergent symptom-deficit profiles, with behavioural variant frontotemporal dementia undermining social-emotional function and preserving or enhancing visuospatial skills, and Alzheimer’s disease showing the inverse pattern. We hypothesized that these disorders would exert opposing connectivity effects within the Salience Network (disrupted in behavioural variant frontotemporal dementia but enhanced in Alzheimer’s disease) and the Default Mode Network (disrupted in Alzheimer’s disease but enhanced in behavioural variant frontotemporal dementia). With task-free functional magnetic resonance imaging, we tested these ideas in behavioural variant frontotemporal dementia, Alzheimer’s disease and healthy age-matched controls (n = 12 per group), using independent component analyses to generate group-level network contrasts. As predicted, behavioural variant frontotemporal dementia attenuated Salience Network connectivity, most notably in frontoinsular, cingulate, striatal, thalamic and brainstem nodes, but enhanced connectivity within the Default Mode Network. Alzheimer’s disease, in contrast, reduced Default Mode Network connectivity to posterior hippocampus, medial cingulo-parieto-occipital regions and the dorsal raphe nucleus, but intensified Salience Network connectivity. Specific regions of connectivity disruption within each targeted network predicted intrinsic connectivity enhancement within the reciprocal network. In behavioural variant frontotemporal dementia, clinical severity correlated with loss of right frontoinsular Salience Network connectivity and with biparietal Default Mode Network connectivity enhancement. Based on these results, we explored whether a combined index of Salience Network and Default Mode Network connectivity might discriminate between the three groups. Linear discriminant analysis achieved 92% clinical classification accuracy, including 100% separation of behavioural variant frontotemporal dementia and Alzheimer’s disease. Patients whose clinical diagnoses were supported by molecular imaging, genetics, or pathology showed 100% separation using this method, including four diagnostically equivocal ‘test’ patients not used to train the algorithm. Overall, the findings suggest that behavioural variant frontotemporal dementia and Alzheimer’s disease lead to divergent network connectivity patterns, consistent with known reciprocal network interactions and the strength and deficit profiles of the two disorders. Further developed, intrinsic connectivity network signatures may provide simple, inexpensive, and non-invasive biomarkers for dementia differential diagnosis and disease monitoring.
doi:10.1093/brain/awq075
PMCID: PMC2912696  PMID: 20410145
functional magnetic resonance imaging; frontotemporal dementia; Alzheimer’s disease; functional connectivity; biomarker
24.  Sporadic Corticobasal Syndrome due to FTLD-TDP 
Acta neuropathologica  2009;119(3):365-374.
Sporadic corticobasal syndrome (CBS) has been associated with diverse pathological substrates, but frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP) has only been linked to CBS among progranulin mutation carriers. We report the clinical, neuropsychological, imaging, genetic, and neuropathological features of GS, a patient with sporadic corticobasal syndrome. Genetic testing revealed no mutations in the microtubule associated protein tau (MAPT) or progranulin (PGRN) genes, but GS proved homozygous for the T allele of the rs5848 PGRN variant. Autopsy showed ubiquitin and TDP-43 pathology most similar to a pattern previously associated with PGRN mutation carriers. These findings confirm that FTLD-TDP should be included in the pathological differential diagnosis for sporadic CBS.
doi:10.1007/s00401-009-0605-1
PMCID: PMC2832091  PMID: 19876635
corticobasal degeneration; TDP-43; frontotemporal lobar degeneration; progranulin
25.  The salience network causally influences default mode network activity during moral reasoning 
Brain  2013;136(6):1929-1941.
Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in patients with behavioural variant frontotemporal dementia. These findings are consistent with a broader model in which the salience network modulates the activity of other large-scale networks, and suggest a revision to a previously proposed ‘dual-process’ account of moral reasoning. These findings also characterize network interactions underlying abnormal moral reasoning in frontotemporal dementia, which may serve as a model for the aberrant judgement and interpersonal behaviour observed in this disease and in other disorders of social function. More broadly, these findings link recent work on the dynamic interrelationships between large-scale brain networks to observable impairments in dementia syndromes, which may shed light on how diseases that target one network also alter the function of interrelated networks.
doi:10.1093/brain/awt066
PMCID: PMC3673466  PMID: 23576128
moral reasoning; frontotemporal dementia; salience network; default mode network; functional neuroimaging

Results 1-25 (59)