PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-22 (22)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  The H50Q Mutation Induces a 10-fold Decrease in the Solubility of α-Synuclein* 
The Journal of Biological Chemistry  2014;290(4):2395-2404.
Background: The basis of the pathogenicity of the H50Q variant α-synuclein is unknown.
Results: The critical concentration of α-synuclein is decreased by 10-fold by the H50Q mutation, and its aggregation is modulated by the wild-type isoform.
Conclusion: Key effects of the H50Q mutation on the aggregation of α-synuclein can be quantified.
Significance: Our data provide insights into the mechanism of Lewy body formation in vivo.
The conversion of α-synuclein from its intrinsically disordered monomeric state into the fibrillar cross-β aggregates characteristically present in Lewy bodies is largely unknown. The investigation of α-synuclein variants causative of familial forms of Parkinson disease can provide unique insights into the conditions that promote or inhibit aggregate formation. It has been shown recently that a newly identified pathogenic mutation of α-synuclein, H50Q, aggregates faster than the wild-type. We investigate here its aggregation propensity by using a sequence-based prediction algorithm, NMR chemical shift analysis of secondary structure populations in the monomeric state, and determination of thermodynamic stability of the fibrils. Our data show that the H50Q mutation induces only a small increment in polyproline II structure around the site of the mutation and a slight increase in the overall aggregation propensity. We also find, however, that the H50Q mutation strongly stabilizes α-synuclein fibrils by 5.0 ± 1.0 kJ mol−1, thus increasing the supersaturation of monomeric α-synuclein within the cell, and strongly favors its aggregation process. We further show that wild-type α-synuclein can decelerate the aggregation kinetics of the H50Q variant in a dose-dependent manner when coaggregating with it. These last findings suggest that the precise balance of α-synuclein synthesized from the wild-type and mutant alleles may influence the natural history and heterogeneous clinical phenotype of Parkinson disease.
doi:10.1074/jbc.M114.610527
PMCID: PMC4303689  PMID: 25505181
alpha-Synuclein (a-synuclein); Amyloid; Fibril; Parkinson Disease; Protein Aggregation; Aggregation Propensity; Fibrils Thermodynamic Stability; Polyproline II Structure
2.  Recent developments in biomarkers in Parkinson disease 
Current opinion in neurology  2013;26(4):395-400.
Purpose of review
Parkinson disease is the second most common neurodegenerative disease after Alzheimer disease, and current demographic trends indicate a life-time risk approaching 4% and predict a doubling of prevalence by 2030. Strategies are being developed to apply recent advances in our understanding of the cause of Parkinson disease to the development of biomarkers that will enable the identification of at-risk individuals, enable early diagnosis and reflect the progression of disease. The latter will be particularly important for the testing of disease-modifying therapies. This review summarizes recent advances in Parkinson disease biomarker development.
Recent findings
Recent reports continue to reflect the application of a variety of clinical, imaging or biochemical measurements, alone or in combination, to general Parkinson disease populations. Probably the most promising is the assay of alpha-synuclein in the diagnosis and evolution of Parkinson disease. At present, detection techniques are still being refined, but once accurate and reproducible assays are available, it will be important to define the relationship of these to early diagnosis and progression. Alpha-synuclein concentrations may also be modulated by certain disease-modifying agents in development and so may represent a measure of their efficacy. It has to be accepted that no single measure currently fulfils all the necessary criteria for a biomarker in Parkinson disease, but combinations of measures are more likely to deliver benefit.
Summary
The Parkinson disease biomarker field is approaching a stage when certain combinations of clinical, imaging and biochemical measures may identify a proportion of individuals at risk for developing the disease. However, their general applicability may be limited. Attention is now turning to stratification of Parkinson disease into certain at-risk groups defined by genotype. The application of multimodal screening to these populations may be more rewarding in the short term.
doi:10.1097/WCO.0b013e3283633741
PMCID: PMC4196782  PMID: 23823465
alpha-synuclein; biomarker; genes; imaging; Parkinson disease
3.  PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2 
Autophagy  2011;7(2):243-245.
PMCID: PMC4196638  PMID: 21139416
mitochondria; mitofusin; mitophagy; neurodegeneration; Parkinson disease; parkin; PINK1
4.  Mitochondrial Contribution to Parkinson's Disease Pathogenesis 
Parkinson's Disease  2011;2011:159160.
The identification of the etiologies and pathogenesis of Parkinson's disease (PD) should play an important role in enabling the development of novel treatment strategies to prevent or slow the progression of the disease. The last few years have seen enormous progress in this respect. Abnormalities of mitochondrial function and increased free radical mediated damage were described in post mortem PD brain before the first gene mutations causing familial PD were published. Several genetic causes are now known to induce loss of dopaminergic cells and parkinsonism, and study of the mechanisms by which these mutations produce this effect has provided important insights into the pathogenesis of PD and confirmed mitochondrial dysfunction and oxidative stress pathways as central to PD pathogenesis. Abnormalities of protein metabolism including protein mis-folding and aggregation are also crucial to the pathology of PD. Genetic causes of PD have specifically highlighted the importance of mitochondrial dysfunction to PD: PINK1, parkin, DJ-1 and most recently alpha-synuclein proteins have been shown to localise to mitochondria and influence function. The turnover of mitochondria by autophagy (mitophagy) has also become a focus of attention. This review summarises recent discoveries in the contribution of mitochondrial abnormalities to PD etiology and pathogenesis.
doi:10.4061/2011/159160
PMCID: PMC3109314  PMID: 21687805
5.  Hyposmia and Cognitive Impairment in Gaucher Disease Patients and Carriers 
The objective of this study was to assess a cohort of Gaucher disease patients and their heterozygous carrier relatives for potential clinical signs of early neurodegeneration. Gaucher disease patients (n = 30), heterozygous glucocerebrosidase mutation carriers (n = 30), and mutation-negative controls matched by age, sex, and ethnicity (n = 30) were recruited. Assessment was done for olfactory function (University of Pennsylvania Smell Identification Test), cognitive function (Mini-Mental State Examination, Montreal Cognitive Assessment), rapid eye movement sleep disorder, autonomic symptoms, and parkinsonian motor signs (Unified Parkinson’s Disease Rating Scale part III, Purdue pegboard). Olfactory function scores were significantly lower in Gaucher disease patients (P = .010) and heterozygous carriers (P < .001) than in controls. Cognitive assessment scores were significantly lower in Gaucher disease patients (P = .002) and carriers (P = .002) than in controls. Unified Parkinson’s Disease Rating Scale motor subscale scores were significantly higher in Gaucher disease patients (P < .001) and heterozygotes (P = .0010) than in controls. There was no difference in scores for symptoms of rapid eye movement sleep disorder or autonomic dysfunction. Impairment of olfaction, cognition, and parkinsonian motor signs occurs more frequently in Gaucher disease patients and carriers than in controls, which may indicate the early stages of neurodegeneration.
doi:10.1002/mds.24945
PMCID: PMC4188387  PMID: 22344629
Parkinson’s disease; genetics; olfactory dysfunction; cognitive dysfunction
6.  Visual short-term memory deficits associated with GBA mutation and Parkinson’s disease 
Brain  2014;137(8):2303-2311.
Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson’s disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson’s disease, are also present in GBA-positive individuals—both with and without Parkinson’s disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar’s orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional ‘filtering’ condition tested patients’ ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals—with or without Parkinson’s disease—as well as GBA-negative patients with Parkinson’s disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson’s disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson’s disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson’s disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson’s disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson’s disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short-term memory associated with GBA mutation and with Parkinson’s disease. Identification of the specific pattern of cognitive impairment in GBA mutation versus Parkinson’s disease is potentially important as it might help to identify individuals at risk of developing Parkinson’s disease.
doi:10.1093/brain/awu143
PMCID: PMC4107740  PMID: 24919969
visual short-term memory; working memory; Gaucher’s disease; glucocerebrosidase
7.  Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells 
Brain  2014;137(5):1481-1495.
Heterozygous GBA gene mutations are the most frequent Parkinson’s disease risk factor. Using Parkinson’s disease patient derived fibroblasts McNeill et al. show that heterozygous GBA mutations reduce glucosylceramidase activity, and are associated with endoplasmic reticulum and oxidative stress. Ambroxol treatment improved glucosylceramidase activity and reduced oxidative stress in these cells.
Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson’s disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson’s disease in the general population. Therefore there is an urgent need to understand the mechanisms by which glucocerebrosidase mutations predispose to neurodegeneration to facilitate development of novel treatments. To study this we generated fibroblast lines from skin biopsies of five patients with Gaucher disease and six heterozygous glucocerebrosidase mutation carriers with and without Parkinson’s disease. Glucosylceramidase protein and enzyme activity levels were assayed. Oxidative stress was assayed by single cell imaging of dihydroethidium. Glucosylceramidase enzyme activity was significantly reduced in fibroblasts from patients with Gaucher disease (median 5% of controls, P = 0.0001) and heterozygous mutation carriers with (median 59% of controls, P = 0.001) and without (56% of controls, P = 0.001) Parkinson’s disease compared with controls. Glucosylceramidase protein levels, assessed by western blot, were significantly reduced in fibroblasts from Gaucher disease (median glucosylceramidase levels 42% of control, P < 0.001) and heterozygous mutation carriers with (median 59% of control, P < 0.001) and without (median 68% of control, P < 0.001) Parkinson’s disease. Single cell imaging of dihydroethidium demonstrated increased production of cytosolic reactive oxygen species in fibroblasts from patients with Gaucher disease (dihydroethidium oxidation rate increased by a median of 62% compared to controls, P < 0.001) and heterozygous mutation carriers with (dihydroethidium oxidation rate increased by a median of 68% compared with controls, P < 0.001) and without (dihydroethidium oxidation rate increased by a median of 70% compared with controls, P < 0.001) Parkinson’s disease. We hypothesized that treatment with the molecular chaperone ambroxol hydrochloride would improve these biochemical abnormalities. Treatment with ambroxol hydrochloride increased glucosylceramidase activity in fibroblasts from healthy controls, Gaucher disease and heterozygous glucocerebrosidase mutation carriers with and without Parkinson’s disease. This was associated with a significant reduction in dihydroethidium oxidation rate of ∼50% (P < 0.05) in fibroblasts from controls, Gaucher disease and heterozygous mutation carriers with and without Parkinson’s disease. In conclusion, glucocerebrosidase mutations are associated with reductions in glucosylceramidase activity and evidence of oxidative stress. Ambroxol treatment significantly increases glucosylceramidase activity and reduces markers of oxidative stress in cells bearing glucocerebrosidase mutations. We propose that ambroxol hydrochloride should be further investigated as a potential treatment for Parkinson’s disease.
doi:10.1093/brain/awu020
PMCID: PMC3999713  PMID: 24574503
Parkinson’s disease; ambroxol; lysosome; Gaucher disease; glucocerebrosidase
8.  A clinical and family history study of Parkinson's disease in heterozygous glucocerebrosidase mutation carriers 
doi:10.1136/jnnp-2012-302402
PMCID: PMC3927562  PMID: 22577228
Parkinson's disease; genetics; glucocerebrosidase; olfactory dysfunction; non-motor; Lewy body; movement disorders; neurogenetics; medicine
9.  Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression☆ 
Neurobiology of Disease  2014;62(100):426-440.
Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24 h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3 h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection.
Highlights
•CCCP increases FL-PINK1 by higher gene expression, even after mitophagy induction.•The increase in PINK1 gene expression is dependent on calcium-mediated signaling.•CCCP produces extracellular calcium entry through L- and N-VDCCs.•CCCP activates the transcription factor c-Fos in a calcium-dependent manner.•CCCP induces mitophagy by calcium-dependent signaling, but c-Fos-independent.
doi:10.1016/j.nbd.2013.10.021
PMCID: PMC3898697  PMID: 24184327
SH-SY5Y; CCCP; Parkinson's disease; PINK1; Calcium; Mitophagy
10.  Dopaminergic Neuronal Imaging in Genetic Parkinson's Disease: Insights into Pathogenesis 
PLoS ONE  2013;8(7):e69190.
Objectives
To compare the dopaminergic neuronal imaging features of different subtypes of genetic Parkinson's Disease.
Methods
A retrospective study of genetic Parkinson's diseases cases in which DaTSCAN (123I-FP-CIT) had been performed. Specific non-displaceable binding was calculated for bilateral caudate and putamen for each case. The right:left asymmetry index and striatal asymmetry index was calculated.
Results
Scans were available from 37 cases of monogenetic Parkinson's disease (7 glucocerebrosidase (GBA) mutations, 8 alpha-synuclein, 3 LRRK2, 7 PINK1, 12 Parkin). The asymmetry of radioligand uptake for Parkinson's disease with GBA or LRRK2 mutations was greater than that for Parkinson's disease with alpha synuclein, PINK1 or Parkin mutations.
Conclusions
The asymmetry of radioligand uptake in Parkinsons disease associated with GBA or LRRK2 mutations suggests that interactions with additional genetic or environmental factors may be associated with dopaminergic neuronal loss.
doi:10.1371/journal.pone.0069190
PMCID: PMC3720622  PMID: 23935950
11.  Mitochondria and Quality Control Defects in a Mouse Model of Gaucher Disease—Links to Parkinson’s Disease 
Cell Metabolism  2013;17(6):941-953.
Summary
Mutations in the glucocerebrosidase (gba) gene cause Gaucher disease (GD), the most common lysosomal storage disorder, and increase susceptibility to Parkinson’s disease (PD). While the clinical and pathological features of idiopathic PD and PD related to gba (PD-GBA) mutations are very similar, cellular mechanisms underlying neurodegeneration in each are unclear. Using a mouse model of neuronopathic GD, we show that autophagic machinery and proteasomal machinery are defective in neurons and astrocytes lacking gba. Markers of neurodegeneration—p62/SQSTM1, ubiquitinated proteins, and insoluble α-synuclein—accumulate. Mitochondria were dysfunctional and fragmented, with impaired respiration, reduced respiratory chain complex activities, and a decreased potential maintained by reversal of the ATP synthase. Thus a primary lysosomal defect causes accumulation of dysfunctional mitochondria as a result of impaired autophagy and dysfunctional proteasomal pathways. These data provide conclusive evidence for mitochondrial dysfunction in GD and provide insight into the pathogenesis of PD and PD-GBA.
Graphical Abstract
Highlights
•Autophagic and proteasomal pathways are suppressed in gba knockout mice•α-Synuclein accumulates and forms deposits in gba knockout mouse brainstem•Neurons and astrocytes from gba knockout mice harbor dysfunctional mitochondria•Mitochondria do not recruit Parkin and accumulate in gba knockout neurons
doi:10.1016/j.cmet.2013.04.014
PMCID: PMC3678026  PMID: 23707074
12.  Retinal thinning in Gaucher disease patients and carriers: Results of a pilot study☆☆☆ 
Molecular Genetics and Metabolism  2013;109(2):221-223.
Both Gaucher disease patients and heterozygous glucocerebrosidase mutation carriers are at increased risk of Parkinson's disease. Retinal thinning has been reported in early Parkinson's disease. Here we used optical coherence tomography to demonstrate thinning of the retinal ganglion cell layer in Gaucher disease patients and carriers who manifest clinical markers of potential early neurodegeneration. Optical coherence tomography may help identify Gaucher disease patients and carriers at increased risk of developing Parkinson's disease.
Highlights
•Gaucher disease patients and carriers are at increased risk of Parkinson’s disease•Retinal thinning is reported in Parkinson's disease•Retinal thinning can be detected by optical coherence tomography (OCT)•We utilized OCT to detect retinal thinning in Gaucher disease patients and carriers
doi:10.1016/j.ymgme.2013.04.001
PMCID: PMC3682181  PMID: 23639447
Gaucher disease; Glucocerebrosidase; Optical coherence tomography; Parkinson's disease
13.  A Proposal for a Comprehensive Grading of Parkinson's Disease Severity Combining Motor and Non-Motor Assessments: Meeting an Unmet Need 
PLoS ONE  2013;8(2):e57221.
Background
Non-motor symptoms are present in Parkinson's disease (PD) and a key determinant of quality of life. The Non-motor Symptoms Scale (NMSS) is a validated scale that allows quantifying frequency and severity (burden) of NMS. We report a proposal for using NMSS scores to determine levels of NMS burden (NMSB) and to complete PD patient classification.
Methods
This was an observational, cross-sectional international study of 935 consecutive patients. Using a distribution of NMSS scores by quartiles, a classification based on levels from 0 (no NMSB at all) to 4 (very severe NMSB) was obtained and its relation with Hoehn and Yahr (HY) staging, motor and health-related quality of life scales was analyzed. Concordance between NMSB levels and grouping based on clinician's global impression of severity, using categorical regression, was determined. Disability and HRQoL predictors were identified by multiple regression models.
Results
The distribution of motor and QoL scales scores by HY and NMSB levels was significantly discriminative. The difference in the classification of cases for both methods, HY and NMSB, was significant (gamma = 0.45; ASE = 0.032). Concordance between NMSB and global severity-based levels from categorical regression was 91.8%, (kappaw = 0.97). NMS score was predictor of disability and QoL.
Conclusions
Current clinical practice does not address a need for inclusion of non-motor scores in routine assessment of PD in spite of the overwhelming influence of NMS on disability and quality of life. Our data overcome the problems of “pure motor assessment” and we propose a combined approach with addition of NMSB levels to standard motor assessments.
doi:10.1371/journal.pone.0057221
PMCID: PMC3584126  PMID: 23468940
14.  Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research 
PLoS ONE  2012;7(8):e43099.
Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community.
doi:10.1371/journal.pone.0043099
PMCID: PMC3428297  PMID: 22952635
15.  Novel pathogenic mutations in the glucocerebrosidase locus 
Molecular Genetics and Metabolism  2012;106(4-2):495-497.
To determine the frequency of mutations responsible for Gaucher's disease, we systematically sequenced the GBA1 gene as part of a molecular characterization of 73 adult patients in the United Kingdom. Five hitherto unknown pathogenic variants were identified, one of which is a splice site change; the others are novel missense mutations. Given that GBA1 gene mutations are an important risk factor for the development of Parkinson's disease, we contend that a complete analysis and molecular characterization of both the known and novel GBA1 variants will be needed before the biochemical processes underlying this genetic association can be fully understood.
Highlights
► We report a comprehensive genotypic analysis of GBA1 in 73 Type I GD patients. ► We identified 5 new mutations in the GBA1 gene. ► The mutations we report here are clearly loss of function alleles.
doi:10.1016/j.ymgme.2012.05.006
PMCID: PMC3426931  PMID: 22658918
Parkinson's disease; Genetics; Gaucher's disease; Glucocerebrosidase; GBA1 gene
16.  G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization 
Human Molecular Genetics  2012;21(19):4201-4213.
The G2019S leucine rich repeat kinase 2 (LRRK2) mutation is the most common genetic cause of Parkinson's disease (PD), clinically and pathologically indistinguishable from idiopathic PD. Mitochondrial abnormalities are a common feature in PD pathogenesis and we have investigated the impact of G2019S mutant LRRK2 expression on mitochondrial bioenergetics. LRRK2 protein expression was detected in fibroblasts and lymphoblasts at levels higher than those observed in the mouse brain. The presence of G2019S LRRK2 mutation did not influence LRRK2 expression in fibroblasts. However, the expression of the G2019S LRRK2 mutation in both fibroblast and neuroblastoma cells was associated with mitochondrial uncoupling. This was characterized by decreased mitochondrial membrane potential and increased oxygen utilization under basal and oligomycin-inhibited conditions. This resulted in a decrease in cellular ATP levels consistent with compromised cellular function. This uncoupling of mitochondrial oxidative phosphorylation was associated with a cell-specific increase in uncoupling protein (UCP) 2 and 4 expression. Restoration of mitochondrial membrane potential by the UCP inhibitor genipin confirmed the role of UCPs in this mechanism. The G2019S LRRK2-induced mitochondrial uncoupling and UCP4 mRNA up-regulation were LRRK2 kinase-dependent, whereas endogenous LRRK2 levels were required for constitutive UCP expression. We propose that normal mitochondrial function was deregulated by the expression of G2019S LRRK2 in a kinase-dependent mechanism that is a modification of the normal LRRK2 function, and this leads to the vulnerability of selected neuronal populations in PD.
doi:10.1093/hmg/dds244
PMCID: PMC3441120  PMID: 22736029
17.  Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy 
Human Molecular Genetics  2010;19(24):4861-4870.
Mitochondrial dysfunction and perturbed degradation of proteins have been implicated in Parkinson's disease (PD) pathogenesis. Mutations in the Parkin and PINK1 genes are a cause of familial PD. PINK1 is a putative kinase associated with mitochondria, and loss of PINK1 expression leads to mitochondrial dysfunction, which increases with time. Parkin is suggested to be downstream of PINK1 and also mediates the removal of damaged mitochondria by macroautophagy (mitophagy). We investigated whether mitochondrial dysfunction in dopaminergic SH-SY5Y cells following decreased PINK1 expression by RNAi may in part be due to the inhibition of mitophagy. Reduced flux through the macroautophagy pathway was found to be coincident with the inhibition of ATP synthesis following 12 days of PINK1 silencing. Overexpression of parkin in these cells restored both autophagic flux and ATP synthesis. Overexpression and RNAi studies also indicated that PINK1 and parkin were required for mitophagy following CCCP-induced mitochondrial damage. The ubiquitination of several mitochondrial proteins, including mitofusin 1 and mitofusin 2, were detected within 3 h of CCCP treatment. These post-translational modifications were reduced following the silencing of parkin or PINK1. The ubiquitination of mitochondrial proteins appears to identify mitochondria for degradation and facilitate mitophagy. PINK1 and parkin are thus required for the removal of damaged mitochondria in dopaminergic cells, and inhibition of this pathway may lead to the accumulation of defective mitochondria which may contribute to PD pathogenesis.
doi:10.1093/hmg/ddq419
PMCID: PMC3583518  PMID: 20871098
18.  Mutant Parkin Impairs Mitochondrial Function and Morphology in Human Fibroblasts 
PLoS ONE  2010;5(9):e12962.
Background
Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD). The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy.
Methodology/Principal Findings
In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7), as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T) and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and controls under basal conditions and decreased to a similar extent under paraquat-induced stress.
Conclusions
Our results indicate that Parkin mutations cause abnormal mitochondrial function and morphology in non-neuronal human cells.
doi:10.1371/journal.pone.0012962
PMCID: PMC2946349  PMID: 20885945
19.  Silencing of PINK1 Expression Affects Mitochondrial DNA and Oxidative Phosphorylation in DOPAMINERGIC Cells 
PLoS ONE  2009;4(3):e4756.
Background
Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD). Impairment of the mitochondrial electron transport chain (ETC) and an increased frequency in deletions of mitochondrial DNA (mtDNA), which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.
Methodology/Principal Findings
In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.
Conclusions
This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease.
doi:10.1371/journal.pone.0004756
PMCID: PMC2649444  PMID: 19270741
20.  Timing of Deep Brain Stimulation in Parkinson Disease: A Need for Reappraisal? 
Annals of Neurology  2013;73(5):565-575.
We review the current application of deep brain stimulation (DBS) in Parkinson disease (PD) and consider the evidence that earlier use of DBS confers long-term symptomatic benefit for patients compared to best medical therapy.
Electronic searches were performed of PubMed, Web of Knowledge, Embase, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials to identify all article types relating to the timing of DBS in PD.
Current evidence suggests that DBS is typically performed in late stage PD, a mean of 14 to 15 years after diagnosis. Current guidelines recommend that PD patients who are resistant to medical therapies, have significant medication side effects and lengthening off periods, but are otherwise cognitively intact and medically fit for surgery be considered for DBS.
If these criteria are rigidly interpreted, it may be that, by the time medical treatment options have been exhausted, the disease has progressed to the point that the patient may no longer be fit for neurosurgical intervention. From the evidence available, we conclude that surgical management of PD alone or in combination with medical therapy results in greater improvement of motor symptoms and quality of life than medical treatment alone. There is evidence to support the use of DBS in less advanced PD and that it may be appropriate for earlier stages of the disease than for which it is currently used. The improving short and long-term safety profile of DBS makes early application a realistic possibility. Ann Neurol 2013;73:565–575
doi:10.1002/ana.23890
PMCID: PMC4065356  PMID: 23483564
21.  Recent developments in biomarkers in Parkinson disease 
Current Opinion in Neurology  2013;26(4):395-400.
Purpose of review
Parkinson disease is the second most common neurodegenerative disease after Alzheimer disease, and current demographic trends indicate a life-time risk approaching 4% and predict a doubling of prevalence by 2030. Strategies are being developed to apply recent advances in our understanding of the cause of Parkinson disease to the development of biomarkers that will enable the identification of at-risk individuals, enable early diagnosis and reflect the progression of disease. The latter will be particularly important for the testing of disease-modifying therapies. This review summarizes recent advances in Parkinson disease biomarker development.
Recent findings
Recent reports continue to reflect the application of a variety of clinical, imaging or biochemical measurements, alone or in combination, to general Parkinson disease populations. Probably the most promising is the assay of alpha-synuclein in the diagnosis and evolution of Parkinson disease. At present, detection techniques are still being refined, but once accurate and reproducible assays are available, it will be important to define the relationship of these to early diagnosis and progression. Alpha-synuclein concentrations may also be modulated by certain disease-modifying agents in development and so may represent a measure of their efficacy. It has to be accepted that no single measure currently fulfils all the necessary criteria for a biomarker in Parkinson disease, but combinations of measures are more likely to deliver benefit.
Summary
The Parkinson disease biomarker field is approaching a stage when certain combinations of clinical, imaging and biochemical measures may identify a proportion of individuals at risk for developing the disease. However, their general applicability may be limited. Attention is now turning to stratification of Parkinson disease into certain at-risk groups defined by genotype. The application of multimodal screening to these populations may be more rewarding in the short term.
doi:10.1097/WCO.0b013e3283633741
PMCID: PMC4196782  PMID: 23823465
alpha-synuclein; biomarker; genes; imaging; Parkinson disease
22.  Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice 
Movement Disorders  2014;29(12):1476-1485.
Alpha-synuclein (α-Syn) aggregates are the main component of Lewy bodies, which are the characteristic pathological feature in Parkinson's disease (PD) brain. Evidence that α-Syn aggregation can be propagated between neurones has led to the suggestion that this mechanism is responsible for the stepwise progression of PD pathology. Decreasing α-Syn expression is predicted to attenuate this process and is thus an attractive approach to delay or halt PD progression. We have used α-Syn small interfering RNA (siRNA) to reduce total and aggregated α-Syn levels in mouse brains. To achieve widespread delivery of siRNAs to the brain we have peripherally injected modified exosomes expressing Ravies virus glycoprotein loaded with siRNA. Normal mice were analyzed 3 or 7 days after injection. To evaluate whether this approach can decrease α-Syn aggregates, we repeated the treatment using transgenic mice expressing the human phosphorylation-mimic S129D α-Syn, which exhibits aggregation. In normal mice we detected significantly reduced α-Syn messenger RNA (mRNA) and protein levels throughout the brain 3 and 7 days after treatment with RVG-exosomes loaded with siRNA to α-Syn. In S129D α-Syn transgenic mice we found a decreased α-Syn mRNA and protein levels throughout the brain 7 days after injection. This resulted in significant reductions in intraneuronal protein aggregates, including in dopaminergic neurones of the substantia nigra. This study highlights the therapeutic potential of RVG-exosome delivery of siRNA to delay and reverse brain α-Syn pathological conditions. © 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
doi:10.1002/mds.25978
PMCID: PMC4204174  PMID: 25112864
α-Syn; RVG-exosomes; siRNA; transgenic mice

Results 1-22 (22)