PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (68)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Recent Perspectives on APP, Secretases, Endosomal Pathways and How they Influence Alzheimer’s Related Pathological Changes in Down Syndrome 
Down syndrome is one of the most common genetic conditions occurring in one in 700 live births. The trisomy of chromosome 21 causes over-expression of APP which in turn is indicated in the increased production of Aβ associated with AD. This makes DS the most common presenile form of AD exceeding PS1 and PS2 FAD. Since a majority of DS individuals develop dementia, it is important to examine whether DS and sporadic AD share common features, for example, to anticipate shared treatments in the future. Here we explore commonalities and differences for secretases and endosomal pathways in DS and AD.
doi:10.4172/2161-0460.S7-002
PMCID: PMC4000700  PMID: 24782952
Down syndrome; Trisomy; Over-expression
2.  Positron Emission Tomography and Neuropathologic Estimates of Fibrillar Amyloid-β in a Patient With Down Syndrome and Alzheimer Disease 
Archives of Neurology  2011;68(11):1461-1466.
Background
Down syndrome appears to be associated with a virtually certain risk of fibrillar amyloid-β (Aβ) pathology by the age of 40 and a very high risk of dementia at older ages. The positron emission tomography (PET) ligand florbetapir F18 has been shown to characterize fibrillar Aβ in the living human brain and to provide a close correlation with subsequent Aβ neuropathology in individuals proximate to and after the end of life. The extent to which the most frequently used PET ligands can be used to detect fibrillar Aβ in patients with Down syndrome remains to be determined.
Objectives
To characterize PET estimates of fibrillar Aβ burden in a Down syndrome patient very close to the end of life and to compare them with neuropathologic assessment made after his death.
Design/Methods
With the family’s informed consent, florbetapir PET was used to study a 55-year-old Down syndrome patient with Alzheimer disease near the end of life; his brain was donated for neuropathologic assessment when he died 14 days later. Visual ratings of cerebral florbetapir uptake were performed by trained readers who were masked to the patient’s diagnosis as part of a larger study, and an automated algorithm was used to characterize regional-to-cerebellar standard uptake value ratios in 6 cerebral regions of interest. Neuropathologic assessments were performed masked to the patient’s diagnosis or PET measurements.
Results
Visual ratings and automated analyses of the PET image revealed a heavy fibrillar Aβ burden in cortical, striatal, and thalamic regions, similar to that reported for patients with late-onset Alzheimer disease. This matched neuropathologic findings of frequent neuritic and diffuse plaques, as well as frequent amyloid angiopathy, except for neuropathologically demonstrated frequent cerebellar diffuse plaques and amyloid angiopathy that were not detected by the PET scan.
Conclusions
Florbetapir PET can be used to detect increased cerebral-to-cerebellar fibrillar Aβ burden in a Down syndrome patient with Alzheimer disease, even in the presence of frequent amyloid angiopathy and diffuse plaques in the cerebellum. Additional studies are needed to determine the extent to which PET could be used to detect and to track fibrillar Aβ and to evaluate investigational Aβ-modifying treatments in the presymptomatic and symptomatic stages of Alzheimer disease.
doi:10.1001/archneurol.2011.535
PMCID: PMC3346179  PMID: 22084131
3.  Frequency of Alzheimer's Disease Pathology at Autopsy in Patients with Clinical Normal Pressure Hydrocephalus 
Background
Normal pressure hydrocephalus (NPH) is considered potentially treatable with the placement of a cerebrospinal fluid (CSF) shunt. Yet, the procedure has had variable success, particularly with respect to improving the cognitive impairment in NPH. The presence of neurologic co-morbidities, particularly Alzheimer's Disease (AD), may contribute to shunt responsiveness. Uncovering the extent to which AD and NPH co-occur has implications for diagnosis and treatment of NPH. Autopsy studies of patients with NPH during life would elucidate the frequency of such co-morbidities.
Methods
We conducted a search of the Sun Health Research Institute Brain Donation Program database between 1/1/1997 and 4/1/09 to identify all cases with neuropathologic evidence of dementia as well as those cases of clinically diagnosed NPH. We reviewed the medical records and brain findings of each NPH case.
Results
Of the 761 cases autopsied over the study interval, 563 cases were found to have neuropathological evidence meeting criteria for a dementing illness. AD was found exclusively in 313/563 (56%) cases with 94/563 cases having a secondary diagnosis of dementia.
We identified 9/761 cases with a clinical diagnosis of NPH, all nine cases were among the 563 cases with neuropathology of dementing illness at autopsy, representing 1.6% (9/563). Upon review of brain autopsy reports, 8/9 (89%) cases were found to have AD and 1/9 (11%) had progressive supranuclear palsy. Review of the medical records of the nine NPH cases revealed the following clinical co-morbidities: 5/9 with AD; 1/9 with Parkinson's Disease (PD); 1/9 with Mild Cognitive Impairment (MCI); 1/9 with seizure disorder.
Conclusions
Given the findings of our study, we support the AD-NPH theory and posit that AD is a common pathological co-morbidity in the setting of NPH and may preclude cognitive improvement post-shunt placement. This may have influence on selection of cases for shunting in the future.
doi:10.1016/j.jalz.2010.12.008
PMCID: PMC3166980  PMID: 21723206
normal pressure hydrocephalus; Alzheimer's disease; cerebrospinal fluid shunt; autopsy study; dementia
4.  PF-04494700, an Oral Inhibitor of Receptor For Advanced Glycation End Products (RAGE), in Alzheimer’s disease 
Objective
To evaluate the safety and tolerability of PF-04494700, an oral Inhibitor of receptor for advanced glycation end products (RAGE), in subjects with mild-to-moderate dementia of the Alzheimer’s type.
Methods
Subjects 50 years and older who met NINCDS-ADRDA criteria for AD with an MMSE score between 12–26 (inclusive) were randomized to 10-weeks of double-blind treatment with either a 10 mg “low dose” of PF-04494700 (after a 6-day loading dose of 30 mg/d to); or a 20 mg “high dose” of PF-04494700 (after a loading dose of 60 mg/d); or placebo. Safety measures included adverse events, laboratory tests, vital signs, and 12-lead ECG.
Results
27 subjects received PF-04494700 30/10 mg (female, 63%; mean age, 74.6 years; mean MMSE, 21.1), 28 subjects received PF-04494700 60/20 mg (female, 57%; mean age, 76.6 years; mean MMSE, 21.6), and 12 subjects received placebo (female, 67%; mean age, 74.1 years; mean MMSE, 19.2). A higher proportion of subjects completed 10 weeks of double-blind treatment on both the “low dose” regimen of PF-04494700 (88.9%) and the “high dose” regimen (85.7%) than completed on placebo (66.7%). Discontinuation due to adverse events, and incidence of severe adverse events, respectively, were lower on the “low dose” regimen (7.4%,11.1%) and the “high dose” regimen (3.6%,10.7%) compared to placebo (25.0%,16.7%). There were no clinically meaningful differences in vital signs, laboratory test results, or mean ECG parameters in subjects treated with PF-04494700. PF-04494700 had no consistent effect on plasma levels of Aβ, inflammatory biomarkers, or secondary cognitive outcomes.
Conclusions
Ten weeks of treatment with PF-04494700 was safe and well-tolerated in subjects with mild-to-moderate AD, indicating the feasibility of a larger long-term efficacy trial.
doi:10.1097/WAD.0b013e318204b550
PMCID: PMC3346183  PMID: 21192237
Alzheimer’s disease; randomized clinical trial; RAGE
5.  Neurochemical Profile of Dementia Pugilistica 
Journal of Neurotrauma  2013;30(11):981-997.
Abstract
Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ–degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.
doi:10.1089/neu.2012.2699
PMCID: PMC3684215  PMID: 23268705
adult brain injury; axonal injury; immunoblots; neurodegenerative disorders; traumatic brain injury
6.  Probable Early-Onset Alzheimer's Disease in an Apolipoprotein E2 Homozygote 
Objective
To describe a case of early-onset Alzheimer's disease (AD) in an apolipoprotein (Apo) ∊2/∊2 homozygote.
Background
Apo ∊2/∊2 is the rarest of the ApoE genotypes, representing only 1.4% of the population. Cognitive decline in ApoE ∊2 homozygotes has rarely been reported. Case Report/Methods: We report a 58-year-old Apo ∊2/∊2 female who meets clinical criteria for probable AD as confirmed by neuropsychological testing, positron emission/computed tomography scan, CSF analysis and genetic screening for known mutations.
Results
The clinical course is typical of AD, with progressive cognitive and functional decline.
Conclusion
Clinically confirmed early-onset AD is atypical in ApoE2 homozygotes but can occur.
doi:10.1159/000320589
PMCID: PMC2992638  PMID: 20975270
Alzheimer's disease; Apolipoprotein E2; Homozygote; Positron emission tomography scan; Neuropsychological assessment; Cerebrospinal fluid analysis
7.  Comparative Analysis of the Alzheimer’s Questionnaire (AQ) with the CDR Sum of Boxes, MoCA, and MMSE 
Alzheimer disease and associated disorders  2012;10.1097/WAD.0b013e3182769731.
The Alzheimer’s Questionnaire (AQ) has been established as a valid and accurate informant-based screening questionnaire for Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI). Although the AQ’s validity and diagnostic accuracy has been established, its performance in comparison to other instruments has not. 39 amnestic mild cognitive impairment (aMCI) cases and 34 Alzheimer’s disease (AD) cases were matched on age, education, and gender to 73 cognitively normal individuals. The sample had a mean age of 82.54±7.77 and a mean education level of 14.61±2.61 years. The diagnostic accuracy of the CDR Sum of Boxes, Mini Mental State Exam (MMSE), Montreal Cognitive Assessment (MoCA), were compared to the AQ. The AQ correlated strongly with the CDR Sum of Boxes (r = .79) and demonstrated similar diagnostic accuracy with the MoCA and MMSE. These results suggest that the AQ is comparable to other established informant-based and patient-based measures.
doi:10.1097/WAD.0b013e3182769731
PMCID: PMC3584226  PMID: 23138174
cognitive screening; mild cognitive impairment; neuropsychological tests; dementia screening
8.  Can platelet BACE1 levels be used as a biomarker for Alzheimer’s disease? Proof-of-concept study 
Platelets  2012;24(3):235-238.
To date there is no validated peripheral biomarker to assist with the clinical diagnosis of Alzheimer’s disease (AD). Platelet proteins have been studied as AD biomarkers with relative success. In the present study we investigated whether platelet BACE1 levels differ between AD and cognitively normal (CN) control patients. Using a newly developed ELISA method, we found that BACE1 levels were significantly lower in AD compare to CN subjects. These data were supported by the observation that several BACE1 isoforms, identified by Western blotting, were also lower in AD platelets. This proof-of-concept study provides evidence for testing platelet BACE1 levels as a peripheral AD biomarker using a novel, sensitive and inexpensive method.
doi:10.3109/09537104.2012.688899
PMCID: PMC4000702  PMID: 22775589
Alzheimer’s disease; BACE1; Biomarker; Peripheral; Platelets
10.  Possible Alzheimer’s Disease in an Apolipoprotein E2 Homozygote 
The objective of this study was to describe a case of Alzheimer’s disease in an ApoE ε2/ε2 homozygote. ApoE ε2/ε2 is the rarest of the apolipoprotein E genotypes, representing only 1.4% of the population. There is only one case reported in the literature of a nonagenarian with minimal cognitive changes whose brain showed AD pathology on postmortem study. Here we report an 87-year-old ApoE ε2/ε2 female who meets clinical criteria for Alzheimer’s disease, with confirmation from neuropsychological testing and PET scan. Clinical course is typical for Alzheimer’s disease with decline on the Mini-Mental Status Examination from a score of 25 to 19 over 3.5 years. The patient is currently treated with donepezil and memantine. In conclusion, a clinically confirmed case of Alzheimer’s disease is rare in Apo E2 homozygotes but can occur.
doi:10.3233/JAD-2009-0932
PMCID: PMC2954753  PMID: 19158419
Alzheimer’s disease; apolipoprotein E2; homozygote; PET scan
11.  PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with 18F-AV-133 (florbenazine) in patients with Alzheimer’s disease and Lewy body disorders 
BMC Neurology  2014;14:79.
Background
Biomarkers based on the underlying pathology of Alzheimer’s disease (AD) and Dementia with Lewy Bodies (DLB) have the potential to improve diagnosis and understanding of the substrate for cognitive impairment in these disorders. The objective of this study was to compare the patterns of amyloid and dopamine PET imaging in patients with AD, DLB and Parkinson’s disease (PD) using the amyloid imaging agent florbetapir F 18 and 18F-AV-133 (florbenazine), a marker for vesicular monamine type 2 transporters (VMAT2).
Methods
Patients with DLB and AD, Parkinson’s disease (PD) and healthy controls (HC) were recruited for this study. On separate days, subjects received intravenous injections of florbetapir, and florbenazine. Amyloid burden and VMAT2 density were assessed quantitatively and by binary clinical interpretation. Imaging results for both tracers were compared across the four individual diagnostic groups and for combined groups based on underlying pathology (AD/DLB vs. PD/HC for amyloid burden and PD/DLB vs. AD/HC for VMAT binding) and correlated with measures of cognition and parkinsonism.
Results
11 DLB, 10 AD, 5 PD, and 5 controls participated in the study. Amyloid binding was significantly higher in the combined AD/DLB patient group (n = 21) compared to the PD/HC groups (n = 10, mean SUVr: 1.42 vs. 1.07; p = 0.0006). VMAT2 density was significantly lower in the PD/DLB group (n = 16) compared to the AD/ HC group (n = 15; 1.83 vs. 2.97; p < 0.0001). Within the DLB group, there was a significant correlation between cognitive performance and striatal florbenazine binding (r = 0.73; p = 0.011).
Conclusions
The results of this study show significant differences in both florbetapir and florbenazine imaging that are consistent with expected pathology. In addition, VMAT density correlated significantly with cognitive impairment in DLB patients (ClinicalTrials.gov identifier: NCT00857506, registered March 5, 2009).
doi:10.1186/1471-2377-14-79
PMCID: PMC4027995  PMID: 24716655
PET imaging; Alzheimer’s disease; Parkinson’s disease; Biomarkers
12.  Parkinson's disease with dementia: comparing patients with and without Alzheimer pathology 
Subjects with Parkinson's disease (PD) frequently develop dementia with greater than one-third meeting neuropathologic diagnostic criteria for Alzheimer's disease (AD). The objective is to identify clinical and neuropathological differences between PDD (PD with dementia) subjects, with and without coexistent AD pathology. Neuropathologic examination was available on subjects diagnosed by clinicopathologic criteria with PDD-AD (N = 23) and PDD+AD (N = 28). A small subset of subjects with PDD-AD and PDD+AD had received at least one standardized neuropsychological assessment. PDD+AD subjects were significantly older at age of PD onset and death, progressed to onset of dementia in less time, and had a shorter duration of PD symptoms prior to the onset of dementia. Education, responsiveness of L-Dopa and dopaminergic medications, presence of cognitive fluctuations and hallucinations, mean MMSE, GDS, FAST and UPDRS scores did not differ significantly between the two groups. The PDD+AD group had significantly greater total plaques, neuritic plaques, total tangles, and Braak stages compared to PDD-AD. This study suggests that it is difficult to distinguish PDD+AD and PDD-AD on the basis of movement, clinical, and neuropsychological assessment. PDD-AD and PDD+AD have similar degrees of dementia and approximately half of PDD subjects have enough AD pathology to attain a neuropathological diagnosis of AD. PDD can develop in the absence of significant Alzheimer pathology.
doi:10.1097/WAD.0b013e31819c5ef4
PMCID: PMC2760034  PMID: 19812474
Parkinson' disease with dementia; Alzheimer's Disease; Dementia with Lewy Bodies; assessment of dementia
13.  Correlation of Clinical Features with Argyrophilic Grains at Autopsy 
Argyrophilic grains (AGs) are a pathologic feature found in association with neurodegenerative disease. Some have suggested that these features may occur as a distinctive condition. We reviewed 80 subjects from our tissue bank with pathologically confirmed AGs and identified their clinical features. We compared these subjects' features to the features of subjects with matched clinical diagnoses but without AGs. Subjects with AGs represented 21.7% of the entire autopsy sample from 1999 through 2005 (80/367). Of AD subjects, 43 /233 had AGs (18.4% of AD subjects); 11 /42 PD-D subjects had AGs (26.1% of PDD subjects); 2 / 9 DLB subjects had AGs (22.2% of DLB subjects); 4 /15 MCI subjects had AGs (26.7% of MCI subjects); and 20 /68 cognitively normal subjects had AGs (29.4% of NC). Subjects with AGs tended to be older but only significantly so in AD. Many co-morbid non-neurological health conditions were seen in cases of AGs without any single predilection emerging. AGs occur in approximately 22% of the entire autopsy cohort and likely are associated with advanced age. No distinctive antemortem clinical features were overrepresented in the AG cases. AGs can occur with or without neurodegenerative conditions and can occur in the absence of significant cognitive decline. AGs are not clearly associated with any single co-morbid health condition.
doi:10.1097/WAD.0b013e318199d833
PMCID: PMC2760041  PMID: 19812464
Argyrophilic grains; dementia; neurodegeneration; neuropathology
14.  Submandibular Gland Biopsy for the Diagnosis of Parkinson Disease 
The clinical diagnosis of Parkinson disease (PD) is incorrect in 30% or more of subjects, particularly at the time of symptom onset. Because Lewy-type α-synucleinopathy (LTS) is present in the submandibular glands of PD patients, we assessed the feasibility of submandibular gland biopsy for diagnosing PD. We performed immunohistochemical staining for LTS in sections of large segments (simulating open biopsy) and needle cores of submandibular gland from 128 autopsied and neuropathologically classified subjects, including 28 PD, 5 incidental Lewy body disease, 5 progressive supranuclear palsy ([PSP] 3 with concurrent PD), 3 corticobasal degeneration, 2 multiple system atrophy, 22 Alzheimer disease with Lewy bodies (ADLB), 16 Alzheimer disease without Lewy bodies and 50 normal elderly. Immunoreactive nerve fibers were present in large submandibular gland sections of all 28 PD subjects (including 3 that also had PSP); 3 ADLB subjects were also positive, but none of the other subjects were positive. Cores from frozen submandibular glands taken with 18 gauge needles (total length 15–38 mm, between 10 and 118 sections per subject examined) were positive for LTS in 17 of 19 PD patients. These results suggest that biopsy of the submandibular gland may be a feasible means of improving PD clinical diagnostic accuracy. This would be particularly advantageous for subject selection in early-stage clinical trials, for invasive therapies or for verifying other biomarker studies.
doi:10.1097/NEN.0b013e3182805c72
PMCID: PMC3571631  PMID: 23334596
α-Synuclein; Biomarker; Clinical trial; Deep brain stimulation; Gene therapy; Lewy body; Parkinson disease; Surgery; Transplantation
15.  Changes in Properties of Serine 129 Phosphorylated α-Synuclein with Progression of Lewy Type Histopathology in Human Brains 
Experimental neurology  2012;240:190-204.
Modifications of α-synuclein resulting in changes in its conformation are considered to be key pathological events for Lewy body diseases (LBD), which include Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). We have previously described a histopathological Unified Staging System for LBD that classifies the spread of α-synuclein phosphorylated at serine 129 (pS129-α-synuclein) from olfactory bulb to brainstem or limbic regions, and finally neocortex. Lewy bodies and Lewy neurites are highly enriched in pS129-α-synuclein. Increased formation of pS129-α-synuclein changes its solubility properties enhancing its tendency to aggregate and disrupt normal function. As in vitro and animal studies have shown that inhibiting formation of pS129-α-synuclein can prevent toxic consequences, this has become one of the therapeutic targets for LBD. However, detailed biochemical descriptions of the changes in pS129-α-synuclein properties in diseased human brains are needed to further our understanding of how these might contribute to molecular pathogenesis. In this study, we used 130 separate brain samples from cingulate cortex (limbic cortex) and 131 from temporal cortex (neocortex) that had been staged according to our Unified Staging System to examine progressive changes in properties of pS129-α-synuclein with the formation of progressively more severe histological Lewy-type pathology. The brain samples from these staged cases had been separated into cytosol-enriched, membrane-enriched (detergent soluble) and insoluble (ureas/SDS soluble) fractions. We also characterized the nature and appearance of higher molecular weight forms of pS129-α-synuclein. The major species was the 16 kD monomeric form; this accumulated with increasing stage with a large increase in Stage IV samples. By comparing two brain regions, we showed higher accumulation of insoluble pS129-α-synuclein in cingulate cortex, where histological deposits occur first, than in temporal cortex in samples with advanced (Stage IV) LB pathology.
doi:10.1016/j.expneurol.2012.11.020
PMCID: PMC3720241  PMID: 23201181
Western blots; Parkinson’s disease; antibodies; fractionation; post-translational modification; postmortem brain tissue; dementia with Lewy bodies; incidental Lewy body disease; pathogenesis; aggregation
16.  Alzheimer Disease Periventricular White Matter Lesions Exhibit Specific Proteomic Profile Alterations 
Neurochemistry international  2012;62(2):145-156.
The white matter (WM) represents approximately half the cerebrum volume and is profoundly affected in Alzheimer’s disease (AD). However, both the WM responses to AD as well as potential influences of this compartment to dementia pathogenesis remain comparatively neglected. Neuroimaging studies have revealed WM alterations are commonly associated with AD and renewed interest in examining the pathologic basis and importance of these changes.
In AD subjects, immunohistochemistry and electron microscopy revealed changes in astrocyte morphology and myelin loss as well as up to 30% axonal loss in areas of WM rarefaction when measured against non-demented control (NDC) tissue. Comparative proteomic analyses were performed on pooled samples of periventricular WM (PVWM) obtained from AD (n = 4) and NDC (n = 5) subjects with both groups having a mean age of death of 86 years. All subjects had an apolipoprotein E ε3/3 genotype with the exception of one NDC subject who was ε2/3. Urea-detergent homogenates were analyzed using two different separation techniques: 2-dimensional isoelectric focusing/reverse-phase chromatography and 2-dimensional difference gel electrophoresis (2D-DIGE). Proteins with different expression levels between the 2 diagnostic groups were identified using MALDI-Tof/Tof mass spectrometry. In addition, Western blots were used to quantify proteins of interest in individual AD and NDC cases.
Our proteomic studies revealed that when WM protein pools were loaded at equal amounts of total protein for comparative analyses, there were quantitative differences between the 2 groups. Molecules related to cytoskeleton maintenance, calcium metabolism and cellular survival such as glial fibrillary acidic protein, vimentin, tropomyosin, collapsin response mediator protein-2, calmodulin, S100-P, annexin A1, α-internexin, α-and β-synuclein, α-B-crystalline, fascin-1, ubiquitin carboxyl-terminal esterase and thymosine were altered between AD and NDC pools.
Our experiments suggest that WM activities become globally impaired during the course of AD with significant morphological, biochemical and functional consequential implications for gray matter function and cognitive deficits. These observations may endorse the hypothesis that WM dysfunction is not only a consequence of AD pathology, but that it may precipitate and/or potentiate AD dementia.
doi:10.1016/j.neuint.2012.12.001
PMCID: PMC3568229  PMID: 23231993
Alzheimer’s disease; periventricular white matter; white matter rarefaction; proteomics; glial fibrillary acidic protein; axonal loss; myelin loss
17.  KIF6 719Arg Carrier Status Association with Homocysteine and C-Reactive Protein in Amnestic Mild Cognitive Impairment and Alzheimer's Disease Patients 
Recent research has demonstrated associations between statin use, KIF6 719Arg carrier status, and cholesterol levels and amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) patients. The association between 719Arg carrier status with homocysteine (tHcy) and c-reactive protein (CRP) levels in aMCI and AD has not been previously investigated. Data from 175 aMCI and AD patients were used for the analysis. 719Arg carriers had significantly lower levels of tHcy than noncarriers (P = 0.02). No significant difference in CRP levels between 719Arg carriers and noncarriers was present (P = 0.37). Logistic regression yielded no significant effect for 719Arg status on CRP [OR = 1.79 (0.85, 3.83), P = 0.13] but did demonstrate a significant effect for tHcy [OR = 0.44 (0.23, 0.83), P = 0.01] after adjusting for ApoE ε4 carrier status, age, gender, and statin use. This study is the first to explore the relationship between KIF6 719Arg carrier status with tHcy and CRP levels. 719Arg carriers were more likely to have normal tHcy levels after adjusting for ApoE ε4 status, age, gender, and statin use. These results suggest that the KIF6 gene might influence cardiovascular pathways associated with AD.
doi:10.1155/2013/242303
PMCID: PMC3884607  PMID: 24455405
18.  SMG1 Identified as a Regulator of Parkinson’s Disease-Associated alpha-Synuclein through siRNA Screening 
PLoS ONE  2013;8(10):e77711.
Synucleinopathies are a broad class of neurodegenerative disorders characterized by the presence of intracellular protein aggregates containing α-synuclein protein. The aggregated α-synuclein protein is hyperphosphorylated on serine 129 (S129) compared to the unaggregated form of the protein. While the precise functional consequences of S129 hyperphosphorylation are still being clarified, numerous in vitro and in vivo studies suggest that S129 phosphorylation is an early event in α-synuclein dysfunction and aggregation. Identifying the kinases and phosphatases that regulate this critical phosphorylation event may ultimately prove beneficial by allowing pharmacological mitigation of synuclein dysfunction and toxicity in Parkinson’s disease and other synucleinopathies. We report here the development of a high-content, fluorescence-based assay to quantitate levels of total and S129 phosphorylated α-synuclein protein. We have applied this assay to conduct high-throughput loss-of-function screens with siRNA libraries targeting 711 known and predicted human kinases and 206 phosphatases. Specifically, knockdown of the phosphatidylinositol 3-kinase related kinase SMG1 resulted in significant increases in the expression of pS129 phosphorylated α-synuclein (p-syn). Moreover, SMG1 protein levels were significantly reduced in brain regions with high p-syn levels in both dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PDD). These findings suggest that SMG1 may play an important role in increased α-synuclein pathology during the course of PDD, DLB, and possibly other synucleinopathies.
doi:10.1371/journal.pone.0077711
PMCID: PMC3813773  PMID: 24204929
19.  Subjects harboring presenilin familial Alzheimer’s disease mutations exhibit diverse white matter biochemistry alterations 
Alzheimer’s disease (AD) dementia impacts all facets of higher order cognitive function and is characterized by the presence of distinctive pathological lesions in the gray matter (GM). The profound alterations in GM structure and function have fostered the view that AD impacts are primarily a consequence of GM damage. However, the white matter (WM) represents about 50% of the cerebrum and this area of the brain is substantially atrophied and profoundly abnormal in both sporadic AD (SAD) and familial AD (FAD). We examined the WM biochemistry by ELISA and Western blot analyses of key proteins in 10 FAD cases harboring mutations in the presenilin genes PSEN1 and PSEN2 as well as in 4 non-demented control (NDC) individuals and 4 subjects with SAD. The molecules examined were direct substrates of PSEN1 such as Notch-1 and amyloid precursor protein (APP). In addition, apolipoproteins, axonal transport molecules, cytoskeletal and structural proteins, neurotrophic factors and synaptic proteins were examined. PSEN-FAD subjects had, on average, higher amounts of WM amyloid-beta (Aβ) peptides compared to SAD, which may play a role in the devastating dysfunction of the brain. However, the PSEN-FAD mutations we examined did not produce uniform increases in the relative proportions of Aβ42 and exhibited substantial variability in total Aβ levels. These observations suggest that neurodegeneration and dementia do not depend solely on enhanced Aβ42 levels. Our data revealed additional complexities in PSEN-FAD individuals. Some direct substrates of γ-secretase, such as Notch, N-cadherin, Erb-B4 and APP, deviated substantially from the NDC group baseline for some, but not all, mutation types. Proteins that were not direct γ-secretase substrates, but play key structural and functional roles in the WM, likewise exhibited varied concentrations in the distinct PSEN mutation backgrounds. Detailing the diverse biochemical pathology spectrum of PSEN mutations may offer valuable insights into dementia progression and the design of effective therapeutic interventions for both SAD and FAD.
PMCID: PMC3783832  PMID: 24093083
Sporadic Alzheimer’s disease; familial Alzheimer’s disease; presenilin; γ-secretase; white matter; gray matter; amyloid precursor protein; amyloid-beta
20.  STRIATAL AMYLOID PLAQUE DENSITY PREDICTS BRAAK NEUROFIBRILLARY STAGE AND CLINICOPATHOLOGICAL ALZHEIMER’S DISEASE: IMPLICATIONS FOR AMYLOID IMAGING 
Amyloid imaging may revolutionize Alzheimer’s disease (AD) research and clinical practice but is critically limited by an inadequate correlation between cerebral cortex amyloid plaques and dementia. Also, amyloid imaging does not indicate the extent of neurofibrillary tangle (NFT) spread throughout the brain. Currently, the presence of dementia as well as a minimal brain load of both plaques and NFTs is required for the diagnosis of AD. Autopsy studies suggest that striatal amyloid plaques may be mainly restricted to subjects in higher Braak NFT stages that meet clinicopathological diagnostic criteria for AD. Striatal plaques, which are readily identified by amyloid imaging, might therefore be used to predict the presence of a higher Braak NFT stage and clinicopathological AD in living subjects. This study determined the sensitivity and specificity of striatal plaques for predicting a higher Braak NFT stage and clinicopathological AD in a postmortem series of 211 elderly subjects. Subjects included 87 clinicopathologically classified as non-demented elderly controls and 124 with AD. A higher striatal plaque density score (moderate or frequent) had 95.8% sensitivity, 75.7% specificity for Braak NFT stage V or VI and 85.6% sensitivity, 86.2% specificity for the presence of dementia and clinicopathological AD (National Institute on Aging – Reagan Institute “intermediate” or “high”). Amyloid imaging of the striatum may be useful as a predictor, in living subjects, of Braak NFT stage and the presence or absence of dementia and clinicopathological AD. Validation of this hypothesis will require autopsy studies of subjects that had amyloid imaging during life.
doi:10.3233/JAD-2011-111340
PMCID: PMC3760731  PMID: 22112552
Alzheimer’s disease; amyloid imaging; striatum; amyloid plaques; diagnosis; therapy; asymptomatic; preclinical; autopsy
21.  Cerebrospinal fluid biomarkers of neuropathologically diagnosed Parkinson's disease subjects 
Neurological research  2012;34(7):669-676.
1. Objectives
Parkinson's disease (PD) afflicts approximately 1-2% of the population over 50 years of age. No cures or effective modifying treatments exist and clinical diagnosis is currently confounded by a lack of definitive biomarkers. We sought to discover potential biomarkers in the cerebrospinal fluid (CSF) of neuropathologically confirmed PD cases.
2. Methods
We compared postmortem ventricular CSF (V-CSF) from PD and normal control (NC) subjects using two-dimensional difference gel electrophoresis (2D-DIGE). Spots exhibiting a 1.5-fold or greater difference in volume between PD patients and controls were excised from the 2D gels, subjected to tryptic digestion and identification of peptides assigned using mass spectrometric/data bank correlation methods.
3. Results
Employing this strategy six molecules: fibrinogen, transthyretin, apolipoprotein E, clusterin, apolipoprotein A-1 and glutathione-S-transferase-Pi were found to be different between PD and NC populations.
4: Discussion
These molecules have been implicated in PD pathogenesis. Combining biomarker data from multiple laboratories may create a consensus panel of proteins that may serve as a diagnostic tool for this neurodegenerative disorder.
doi:10.1179/1743132812Y.0000000063
PMCID: PMC3681206  PMID: 22889670
2D-DIGE; cerebrospinal fluid; Parkinson's disease; proteomics
22.  Autonomic function, as self-reported on the SCOPA-autonomic questionnaire, is normal in essential tremor but not in Parkinson’s disease 
Parkinsonism & related disorders  2012;18(10):1089-1093.
Objective
To compare autonomic function of subjects with Parkinson’s disease (PD) and essential tremor (ET) relative to controls.
Background
It has been reported that patients with PD have autonomic dysfunction while no literature exists regarding autonomic function in ET.
Methods
Subjects with PD, ET, and controls had autonomic function measured using the SCOPA-Autonomic questionnaire, with the total and domain scores transformed to a scale of 0–100 points.
Results
62 subjects with PD, 84 with ET, and 291 controls were included. Women were more prevalent in control (69%) compared to PD (44%) and ET (44%) groups, and mean age was significantly younger in PD (73 yrs) and older in ET (83) compared to controls (81). The mean SCOPA-Aut Total score in PD was significantly higher than controls, with no difference in ET. No autonomic dysfunction was found in any domain in ET but in PD there were significant abnormalities in gastrointestinal, cardiovascular, urinary, and thermoregulatory domains. Individual question data revealed a significantly higher percentage of subjects with dysfunction on 11/23 questions in the PD group but only 1 question (sialorrhea) in the ET group compared with controls.
Conclusion
Autonomic scores, particularly gastrointestinal, cardiovascular, urinary, and thermoregulatory were increased in patients with PD, as assessed by SCOPA-Aut. Patients with ET did not exhibit autonomic dysfunction, with the exception of sialorrhea.
doi:10.1016/j.parkreldis.2012.06.008
PMCID: PMC3665503  PMID: 22771283
Autonomic dysfunction; Parkinson’s disease; Essential tremor
23.  The influence of Apolipoprotein E genotype on regional pathology in Alzheimer’s disease 
BMC Neurology  2013;13:44.
Background
Carriers of the ApoE ϵ4 allele are at a greater risk for developing Alzheimer’s disease (AD) and those who do develop AD tend to have a much greater neuropathological disease burden. Although several studies have shown significant differences in AD pathology among ϵ4 carriers and non-carriers, few have characterized these differences in terms of brain region and neuropathological score frequency.
Methods
566 pathologically-confirmed AD cases who were followed prospectively with antemortem dementia diagnoses (312 ApoE ϵ4 carriers and 254 ApoE ϵ4 non-carriers) were compared on the frequencies of neuropathological frequency scores (none, sparse, moderate, frequent) among several different brain regions (frontal, temporal, parietal, hippocampal, and entorhinal) using the CERAD scoring system. Pathology score frequencies were analyzed by carrier status (ϵ4 carrier vs. ϵ4 non-carrier) and by genotype (2/3, 3/3, 2/4, 3/4, 4/4). Both analyses investigated pathology score frequencies among different brain regions (frontal, temporal, parietal, hippocampal, and entorhinal).
Results
ϵ4 carriers had a significantly lower age at death (p <0.001) and significantly higher Braak scores (p <0.001) than ϵ4 non-carriers. Genotype comparison revealed that plaque and tangle pathologies increased in the following pattern, 2/3<3/3<2/4<3/4<4/4, for several brain regions. When stratified by age and ApoE ϵ4 carrier status, ϵ4 carriers tended to have significantly more frequent scores across most cortical areas. However, non-carriers age 90 and older tended to have greater plaque pathology than carriers. For tangle pathology, ϵ4 carriers tended to have significantly more “frequent” scores than non-carriers, except for the hippocampal and entorhinal areas in individuals age 90 and older.
Conclusions
ApoE ϵ4 carriers had a significantly higher percentage of “frequent” scores for plaques and tangles when compared to ApoE ϵ4 non-carriers for several brain regions. However, ϵ4 non-carriers age 90 and older tended to have less plaque and tangle pathology in certain brain regions. These results demonstrate that AD pathology may manifest itself differently based on ApoE genotype and suggest that ApoE carriers and non-carriers may have different patterns of AD neuropathology location and density.
doi:10.1186/1471-2377-13-44
PMCID: PMC3654892  PMID: 23663404
24.  Validation and diagnostic accuracy of the Alzheimer's questionnaire 
Age and Ageing  2012;41(3):396-399.
Background: accurately identifying individuals with cognitive impairment is difficult. Given the time constraints that many clinicians face, assessment of cognitive status is often not undertaken. The intent of this study is to determine the diagnostic accuracy of the Alzheimer's questionnaire (AQ) in identifying individuals with mild cognitive impairment (MCI) and AD.
Methods: utilising a case–control design, 300 [100 AD, 100 MCI, 100 cognitively normal (CN)] older adults between the ages of 53 and 93 from a neurology practice and a brain donation programme had the AQ administered to an informant. Diagnostic accuracy was assessed through receiver-operating characteristic analysis, which yielded sensitivity, specificity and area under the curve (AUC).
Results: the AQ demonstrated high sensitivity and specificity for detecting MCI [89.00 (81.20–94.40)]; [91.00 (83.60–65.80)] and AD [99.00 (94.60–100.00)]; [96.00 (90.10–98.90)]. AUC values also indicated high diagnostic accuracy for both MCI [0.95 (0.91–0.97)] and AD [0.99 (0.96–1.00)]. Internal consistency of the AQ was also high (Cronbach's alpha = 0.89).
Conclusion: the AQ is a valid informant-based instrument for identifying cognitive impairment, which could be easily implemented in a clinician's practice. It has high sensitivity and specificity in detecting both MCI and AD and allows clinicians to quickly and accurately assess individuals with reported cognitive problems.
doi:10.1093/ageing/afs008
PMCID: PMC3335371  PMID: 22367356
mild cognitive impairment; Alzheimer's disease; cognitive screening; informant-based assessment
25.  Bapineuzumab Alters Aβ Composition: Implications for the Amyloid Cascade Hypothesis and Anti-Amyloid Immunotherapy 
PLoS ONE  2013;8(3):e59735.
The characteristic neuropathological changes associated with Alzheimer’s disease (AD) and other lines of evidence support the amyloid cascade hypothesis. Viewing amyloid deposits as the prime instigator of dementia has now led to clinical trials of multiple strategies to remove or prevent their formation. We performed neuropathological and biochemical assessments of 3 subjects treated with bapineuzumab infusions. Histological analyses were conducted to quantify amyloid plaque densities, Braak stages and the extent of cerebral amyloid angiopathy (CAA). Amyloid-β (Aβ) species in frontal and temporal lobe samples were quantified by ELISA. Western blots of amyloid-β precursor protein (AβPP) and its C-terminal (CT) fragments as well as tau species were performed. Bapineuzumab-treated (Bapi-AD) subjects were compared to non-immunized age-matched subjects with AD (NI-AD) and non-demented control (NDC) cases. Our study revealed that Bapi-AD subjects exhibited overall amyloid plaque densities similar to those of NI-AD cases. In addition, CAA was moderate to severe in NI-AD and Bapi-AD patients. Although histologically-demonstrable leptomeningeal, cerebrovascular and neuroparenchymal-amyloid densities all appeared unaffected by treatment, Aβ peptide profiles were significantly altered in Bapi-AD subjects. There was a trend for reduction in total Aβ42 levels as well as an increase in Aβ40 which led to a corresponding significant decrease in Aβ42:Aβ40 ratio in comparison to NI-AD subjects. There were no differences in the levels of AβPP, CT99 and CT83 or tau species between Bapi-AD and NI-AD subjects. The remarkable alteration in Aβ profiles reveals a dynamic amyloid production in which removal and depositional processes were apparently perturbed by bapineuzumab therapy. Despite the alteration in biochemical composition, all 3 immunized subjects exhibited continued cognitive decline.
doi:10.1371/journal.pone.0059735
PMCID: PMC3605408  PMID: 23555764

Results 1-25 (68)