Search tips
Search criteria

Results 1-25 (53)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Genetic Analysis of Inherited Leukodystrophies 
JAMA neurology  2013;70(7):875-882.
The leukodystrophies comprise a clinically and genetically heterogeneous group of progressive hereditary neurological disorders mainly affecting the myelin in the central nervous system. Their onset is variable from childhood to adulthood and presentation can be with a variety of clinical features that include mainly for adult-onset cases cognitive decline, seizures, parkinsonism, muscle weakness, neuropathy, spastic paraplegia, personality/behavioral problems, and dystonia. Recently, Rademakers and colleagues identified mutations in the CSF1R gene as the cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), offering the possibility for an in-life diagnosis. The detection of mutations in this gene in cases diagnosed with different clinical entities further demonstrated the difficulties in the clinical diagnosis of HDLS.
To better understand the genetic role of mutations in this gene, we sequenced a large cohort of adult-onset leukodystrophy cases.
Whole-exome sequencing and follow up-screening by Sanger sequencing.
Collaborative study between the Institute of Neurology, University College London and the Inserm, Paris, France.
A total of 114 probands, mostly European patients, with a diagnosis of adult-onset leukodystrophy or atypical cases that could fit within a picture of leukodystrophy. These included 3 extended families within the spectrum of leukodystrophy phenotype.
Whole-exome sequencing in a family and Sanger sequencing of CSF1R.
Main Outcomes and Measures
Mutations in CSF1R.
We identified 12 probands with mutations in CSF1R. The clinical diagnoses given to these patients included dementia with spastic paraplegia, corticobasal degeneration syndrome, and stroke disorders. Our study shows that CSF1R mutations are responsible for a significant proportion of clinically and pathologically proven HDLS.
Conclusions and Relevance
These results give an indication of the frequency of CSF1R mutations in a European leukodystrophy series and expand the phenotypic spectrum of disorders that should be screened for this gene.
PMCID: PMC4204151  PMID: 23649896
2.  Imaging endpoints for clinical trials in Alzheimer’s disease 
As the need to develop a successful disease-modifying treatment for Alzheimer’s disease (AD) becomes more urgent, imaging is increasingly used in therapeutic trials. We provide an overview of how the different imaging modalities are used in AD studies and the current regulatory guidelines for their use in clinical trials as endpoints. We review the current literature for results of imaging endpoints of efficacy and safety in published clinical trials. We start with trials in mild to moderate AD, where imaging (largely magnetic resonance imaging (MRI)) has long played a role in inclusion and exclusion criteria; more recently, MRI has been used to identify adverse events and to measure rates of brain atrophy. The advent of amyloid imaging using positron emission tomography has led to trials incorporating amyloid measurements as endpoints and incidentally to the recognition of the high proportion of amyloid-negative individuals that may be recruited into these trials. Ongoing and planned trials now commonly include multimodality imaging: amyloid positron emission tomography, MRI and other modalities. At the same time, the failure of recent large profile trials in mild to moderate AD together with the realisation that there is a long prodromal period to AD has driven a push to move studies to earlier in the disease. Imaging has particularly important roles, alongside other biomarkers, in assessing efficacy because conventional clinical outcomes may have limited ability to detect treatment effects in these early stages.
Electronic supplementary material
The online version of this article (doi:10.1186/s13195-014-0087-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4304258  PMID: 25621018
3.  Delayed auditory feedback simulates features of nonfluent primary progressive aphasia 
Journal of the Neurological Sciences  2014;347(1-2):345-348.
The pathophysiology of nonfluent primary progressive aphasia (nfvPPA) remains poorly understood. Here, we compared quantitatively speech parameters in patients with nfvPPA versus healthy older individuals under altered auditory feedback, which has been shown to modulate normal speech output. Patients (n = 15) and healthy volunteers (n = 17) were recorded while reading aloud under delayed auditory feedback [DAF] with latency 0, 50 or 200 ms and under DAF at 200 ms plus 0.5 octave upward pitch shift. DAF in healthy older individuals was associated with reduced speech rate and emergence of speech sound errors, particularly at latency 200 ms. Up to a third of the healthy older group under DAF showed speech slowing and frequency of speech sound errors within the range of the nfvPPA cohort. Our findings suggest that (in addition to any anterior, primary language output disorder) these key features of nfvPPA may reflect distorted speech input signal processing, as simulated by DAF. DAF may constitute a novel candidate pathophysiological model of posterior dorsal cortical language pathway dysfunction in nfvPPA.
•The pathophysiology of nonfluent progressive aphasia (nfvPPA) is poorly understood.•Delayed auditory feedback (DAF) disrupts speech output in some normal listeners.•We compared quantitatively speech in nvfPPA with DAF in healthy older individuals.•Around a third of healthy older individuals under DAF developed features of nvfPPA.•DAF is a candidate pathophysiological model of dorsal pathway dysfunction in nfvPPA.
PMCID: PMC4267508  PMID: 25305712
Delayed auditory feedback; Altered auditory feedback; Dementia; Progressive aphasia; Language; Dorsal pathway
4.  TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions 
Acta neuropathologica  2014;127(3):407-418.
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA binding protein of 43kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n=14), with the major allele correlated with later age at death (p=0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n=75), again finding that the major allele associates with later age at death (p=0.016), as well as later age at onset (p=0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
PMCID: PMC4003885  PMID: 24442578
TMEM106B; C9orf72; frontotemporal dementia; frontotemporal lobar degeneration; amyotrophic lateral sclerosis; genetic modifier
5.  Using Exome Sequencing to Reveal Mutations in TREM2 Presenting as a Frontotemporal Dementia–like Syndrome Without Bone Involvement 
JAMA neurology  2013;70(1):78-84.
To identify new genes and risk factors associated with frontotemporal dementia (FTD). Several genes and loci have been associated with different forms of FTD, but a large number of families with dementia do not harbor mutations in these genes.
Whole-exome sequencing and whole-genome genotyping were performed in all patients. Genetic variants obtained from whole-exome sequencing were integrated with the data obtained from whole-genome genotyping.
Database of the Behavioral Neurology Outpatient Clinic of the Department of Neurology, Istanbul Faculty of Medicine, Istanbul, Turkey.
Forty-four Turkish patients with an FTD-like clinical diagnosis were included in the study. Relatives were screened when appropriate.
Main Outcome Measure
Mutations in the triggering receptor expressed on myeloid cells 2 gene (TREM2).
In 3 probands with FTD-like disease, we identified different homozygous mutations in TREM2 that had previously been associated with polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL). None of these 3 patients had a typical clinical presentation of PLOSL: they presented with behavioral change and subsequent cognitive impairment and motor features but without any bone cysts or bone-associated phenotypes. Imaging showed white matter abnormalities as well as frontal atrophy in all 3 patients.
Our results show that TREM2 is responsible for an unexpectedly high number of dementia cases in our cohort, suggesting that this gene should be taken into account when mutations in other dementia genes are excluded. Even for complex syndromes such as dementia, exome sequencing has proven to be a rapid and cost-effective tool to identify genetic mutations, allowing for the association of clinical phenotypes with unexpected molecular underpinnings.
PMCID: PMC4001789  PMID: 23318515
6.  Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia 
Brain and Language  2013;127(2):121-126.
► Patterns of cell loss in lvPPA remain asymmetrical over time. ► More anterior left hemisphere areas become involved over time. ► Right hemisphere regions become affected that mirror early left hemisphere change. ► Left hemisphere atrophy rates are greater than right hemisphere. ► Over time patients with lvPPA develop single word level processing deficits.
The logopenic variant of primary progressive aphasia (PPA) is characterised by impaired sentence repetition and word retrieval difficulties. Post mortem studies, amyloid imaging and CSF tau/Aβ measurements suggest Alzheimer’s disease (AD) pathology as the underlying cause. Relatively little is known about patterns of progression in patients with the logopenic variant of PPA. 21 patients (3 with post mortem confirmation of AD and 5 with positive amyloid PIB-PET scans) were studied with longitudinal T1-weighted MR imaging (mean interscan interval 1.2 years) using volumetric analysis and voxel-based morphometry (VBM). Baseline imaging showed asymmetrical (left greater than right) involvement of the posterior superior temporal and inferior parietal lobes as well as posterior cingulate and medial temporal lobes. The whole brain rate of volume loss was 2.0% per year with a greater rate of left hemisphere atrophy (2.3%/year) than right hemisphere (1.6%/year). Longitudinal VBM analysis showed increasing involvement of other areas in the left hemisphere (temporal, parietal, frontal and caudate) and atrophy of areas in the right hemisphere that had been involved earlier in the disease in the left hemisphere, particularly posterior cingulate/precuneus. With disease progression there was worsening of anomia, sentence repetition and sentence comprehension but consistent with the spread of imaging changes also deficits in single word comprehension, single word repetition and verbal memory. This study shows that the logopenic variant of PPA remains an asymmetrical disease, with spread through the left hemisphere language network but also involvement to a lesser degree of regions in the right hemisphere that mirror the earlier left hemisphere changes.
PMCID: PMC3880853  PMID: 23395096
Primary progressive aphasia; Logopenic aphasia
7.  Molecular nexopathies: a new paradigm of neurodegenerative disease 
Trends in Neurosciences  2013;36(10):561-569.
•How proteinopathies damage brain networks is a key issue in neurodegenerative disease.•Here, we outline a solution based on the concept of ‘molecular nexopathies’.•The concept is founded on specific interactions of network and protein properties.•This new paradigm has far-reaching biological and clinical implications.
Neural networks provide candidate substrates for the spread of proteinopathies causing neurodegeneration, and emerging data suggest that macroscopic signatures of network disintegration differentiate diseases. However, how do protein abnormalities produce network signatures? The answer may lie with ‘molecular nexopathies’: specific, coherent conjunctions of pathogenic protein and intrinsic network characteristics that define network signatures of neurodegenerative pathologies. Key features of the paradigm that we propose here include differential intrinsic network vulnerability to propagating protein abnormalities, in part reflecting developmental structural and functional factors; differential vulnerability of neural connection types (e.g., clustered versus distributed connections) to particular pathogenic proteins; and differential impact of molecular effects (e.g., toxic-gain-of-function versus loss-of-function) on gradients of network damage. The paradigm has implications for understanding and predicting neurodegenerative disease biology.
PMCID: PMC3794159  PMID: 23876425
neurodegeneration; dementia; neural network; nexopathy
8.  A novel A781V mutation in the CSF1R gene causes hereditary diffuse leucoencephalopathy with axonal spheroids☆ 
Journal of the Neurological Sciences  2013;332(1-2):141-144.
We report a family with a novel CSF1R mutation causing hereditary diffuse leucoencephalopathy with axonal spheroids. Family members presented with neuropsychiatric and behavioural symptoms, with subsequent development of motor symptoms and gait disturbance. MRI brain showed extensive white matter change with a frontal predominance and associated atrophy in two members of the family. Genetic testing revealed a novel mutation c.2342C > T (p.A781V) in the CSF1R gene in two brothers of the family. This report highlights the difficulties in diagnosing HDLS and discusses the indications for testing for mutations in the CSF1R gene.
PMCID: PMC3750216  PMID: 23816250
CSF1R; HDLS; Leucoencephalopathy; Dementia; Frontal dementia; Behavioural change
9.  Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia 
Acta Neuropathologica  2013;126(3):401-409.
An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). We now report the first description of a homozygous patient and compare it to a series of heterozygous cases. The patient developed early-onset frontotemporal dementia without additional features. Neuropathological analysis showed c9FTD/ALS characteristics, with abundant p62-positive inclusions in the frontal and temporal cortices, hippocampus and cerebellum, as well as less abundant TDP-43-positive inclusions. Overall, the clinical and pathological features were severe, but did not fall outside the usual disease spectrum. Quantification of C9orf72 transcript levels in post-mortem brain demonstrated expression of all known C9orf72 transcript variants, but at a reduced level. The pathogenic mechanisms by which the hexanucleotide repeat expansion causes disease are unclear and both gain- and loss-of-function mechanisms may play a role. Our data support a gain-of-function mechanism as pure homozygous loss of function would be expected to lead to a more severe, or completely different clinical phenotype to the one described here, which falls within the usual range. Our findings have implications for genetic counselling, highlighting the need to use genetic tests that distinguish C9orf72 homozygosity.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-013-1147-0) contains supplementary material, which is available to authorized users.
PMCID: PMC3753468  PMID: 23818065
C9orf72; ALS; FTD
10.  Frequency of the C9ORF72 hexanucleotide repeat expansion in ALS and FTD in diverse populations: a cross-sectional study 
Lancet Neurology  2012;11(4):323-330.
A hexanucleotide repeat expansion in the C9ORF72 gene has recently been shown to cause a large proportion of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD).
We screened 4,448 patients diagnosed with ALS and 1,425 patients diagnosed with FTD drawn from diverse populations for the hexanucleotide expansion using a repeat-primed PCR assay. ALS and FTD were diagnosed according to the El Escorial and Lund-Manchester criteria respectively. Familial status was based on self-reported family history of similar neurodegenerative diseases at the time of sample collection. Haplotype data of 262 patients carrying the expansion were compared with the known Finnish founder risk haplotype across the chromosomal locus. Age-related penetrance was calculated by the Kaplan-Meier method using data from 603 individuals carrying the expansion.
The mutation was observed among 7·0% (n = 236 of 3,377) of Caucasians, 4·1% (n = 2 of 49) of African-Americans, and 8·3% (n = 6 of 72) of Hispanic individuals diagnosed with sporadic ALS, whereas the rate was 6·0% (n = 59 of 981) among Caucasians diagnosed with sporadic FTD. Among Asians, 5·0% (n = 1 of 20) of familial ALS and 66·6% (n = 2 of 3) of familial FTD cases carried the repeat expansion. In contrast, mutations were not observed among patients of Native American (n = 3 sporadic ALS), Indian (n = 31 sporadic ALS, n = 31 sporadic FTD), and Pacific Islander (n = 90 sporadic ALS) ethnicity. All patients with the repeat expansion carried, either partially or fully, the founder haplotype suggesting that the expansion occurred on a single occasion in the past (~1,500 years ago). The pathogenic expansion was non-penetrant below 35 years of age, increasing to 50·0% penetrance by 58 years of age, and was almost fully penetrant by 80 years of age.
We confirm that a common single Mendelian genetic lesion is implicated in a large proportion of sporadic and familial ALS and FTD. Testing for this pathogenic expansion will be important in the management and genetic counseling of patients with these fatal neurodegenerative diseases.
See Acknowledgements.
PMCID: PMC3322422  PMID: 22406228
12.  Early-onset Alzheimer disease clinical variants 
Neurology  2012;79(1):80-84.
To assess patterns of reduced cortical thickness in different clinically defined variants of early-onset Alzheimer disease (AD) and to explore the hypothesis that these variants span a phenotypic continuum rather than represent distinct subtypes.
The case-control study included 25 patients with posterior cortical atrophy (PCA), 15 patients with logopenic progressive aphasia (LPA), and 14 patients with early-onset typical amnestic AD (tAD), as well as 30 healthy control subjects. Cortical thickness was measured using FreeSurfer, and differences and commonalities in patterns of reduced cortical thickness were assessed between patient groups and controls. Given the difficulty of using mass-univariate statistics to test ideas of continuous variation, we use multivariate machine learning algorithms to visualize the spectrum of subjects and to assess separation of patient groups from control subjects and from each other.
Although each patient group showed disease-specific reductions in cortical thickness compared with control subjects, common areas of cortical thinning were identified, mainly involving temporoparietal regions. Multivariate analyses permitted clear separation between control subjects and patients and moderate separation between patients with PCA and LPA, while patients with tAD were distributed along a continuum between these extremes. Significant classification performance could nevertheless be obtained when every pair of patient groups was compared directly.
Analyses of cortical thickness patterns support the hypothesis that different clinical presentations of AD represent points in a phenotypic spectrum of neuroanatomical variation. Machine learning shows promise for syndrome separation and for identifying common anatomic patterns across syndromes that may signify a common pathology, both aspects of interest for treatment trials. Neurology® 2012;79:80–84
PMCID: PMC3385494  PMID: 22722624
13.  Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions 
Frontotemporal dementia (FTD) is a common cause of early-onset dementia with a significant genetic component, as underlined by the recent identification of repeat expansions in the gene C9ORF72 as a major cause of FTD and motor neuron disease. Understanding the neurobiology and clinical phenomenology of this novel mutation is currently a major research focus. However, few data are available concerning the longitudinal evolution of this genetic disease. Here we present longitudinal neuropsychological and neuroimaging data on a cohort of patients with pathological repeat expansions in C9ORF72.
Following a review of the University College London FTD DNA database, 20 cases were retrospectively identified with a C9ORF72 expansion. Twelve cases had longitudinal neuropsychology data available and six of these cases also had longitudinal volumetric brain magnetic resonance imaging. Cortical and subcortical volumes were extracted using FreeSurfer. Rates of whole brain, hemispheric, cerebellar and ventricular change were calculated for each subject. Nonlinear fluid registration of follow-up to baseline scan was performed to visualise longitudinal intra-subject patterns of brain atrophy and ventricular expansion.
Patients had low average verbal and performance IQ at baseline that became impaired (< 5th percentile) at follow-up. In particular, visual memory, naming and dominant parietal skills all showed deterioration. Mean rates of whole brain atrophy (1.4%/year) and ventricular expansion (3.2 ml/year) were substantially greater in patients with the C9ORF72 mutation than in healthy controls; atrophy was symmetrical between the cerebral hemispheres within the C9ORF72 mutation group. The thalamus and cerebellum showed significant atrophy whereas no cortical areas were preferentially affected. Longitudinal fluid imaging in individual patients demonstrated heterogeneous patterns of progressive volume loss; however, ventricular expansion and cerebellar volume loss were consistent findings.
Disease evolution in C9ORF72-associated FTD is linked neuropsychologically with increasing involvement of parietal and amnestic functions, and neuroanatomically with rather diffuse and variable cortical and central atrophy but more consistent involvement of the cerebellum and thalamus. These longitudinal profiles are consistent with disease spread within a distributed subcortical network and demonstrate the feasibility of longitudinal biomarkers for tracking the evolution of the C9ORF72 mutation phenotype.
PMCID: PMC3580398  PMID: 23006986
14.  A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies 
Brain  2011;134(9):2548-2564.
Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause familial amyotrophic lateral sclerosis and fused in sarcoma-positive neuronal inclusions have subsequently been demonstrated in neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration with ubiquitinated inclusions. Here we provide clinical, imaging, morphological findings, as well as genetic and biochemical data in 14 fused in sarcoma proteinopathy cases. In this cohort, the age of onset was variable but included cases of young-onset disease. Patients with atypical frontotemporal lobar degeneration with ubiquitinated inclusions all presented with behavioural variant frontotemporal dementia, while the clinical presentation in neuronal intermediate filament inclusion disease was more heterogeneous, including cases with motor neuron disease and extrapyramidal syndromes. Neuroimaging revealed atrophy of the frontal and anterior temporal lobes as well as the caudate in the cases with atypical frontotemporal lobar degeneration with ubiquitinated inclusions, but was more heterogeneous in the cases with neuronal intermediate filament inclusion disease, often being normal to visual inspection early on in the disease. The distribution and severity of fused in sarcoma-positive neuronal cytoplasmic inclusions, neuronal intranuclear inclusions and neurites were recorded and fused in sarcoma was biochemically analysed in both subgroups. Fused in sarcoma-positive neuronal cytoplasmic and intranuclear inclusions were found in the hippocampal granule cell layer in variable numbers. Cortical fused in sarcoma-positive neuronal cytoplasmic inclusions were often ‘Pick body-like’ in neuronal intermediate filament inclusion disease, and annular and crescent-shaped inclusions were seen in both conditions. Motor neurons contained variable numbers of compact, granular or skein-like cytoplasmic inclusions in all fused in sarcoma-positive cases in which brainstem and spinal cord motor neurons were available for study (five and four cases, respectively). No fused in sarcoma mutations were found in any cases. Biochemically, two major fused in sarcoma species were found and shown to be more insoluble in the atypical frontotemporal lobar degeneration with ubiquitinated inclusions subgroup compared with neuronal intermediate filament inclusion disease. There is considerable overlap and also significant differences in fused in sarcoma-positive pathology between the two subgroups, suggesting they may represent a spectrum of the same disease. The co-existence of fused in sarcoma-positive inclusions in both motor neurons and extramotor cerebral structures is a characteristic finding in sporadic fused in sarcoma proteinopathies, indicating a multisystem disorder.
PMCID: PMC3170529  PMID: 21752791
frontotemporal lobar degeneration; FUS; clinical presentation; neuropathology; biochemistry
15.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia 
Brain  2011;134(9):2456-2477.
Based on the recent literature and collective experience, an international consortium developed revised guidelines for the diagnosis of behavioural variant frontotemporal dementia. The validation process retrospectively reviewed clinical records and compared the sensitivity of proposed and earlier criteria in a multi-site sample of patients with pathologically verified frontotemporal lobar degeneration. According to the revised criteria, ‘possible’ behavioural variant frontotemporal dementia requires three of six clinically discriminating features (disinhibition, apathy/inertia, loss of sympathy/empathy, perseverative/compulsive behaviours, hyperorality and dysexecutive neuropsychological profile). ‘Probable’ behavioural variant frontotemporal dementia adds functional disability and characteristic neuroimaging, while behavioural variant frontotemporal dementia ‘with definite frontotemporal lobar degeneration’ requires histopathological confirmation or a pathogenic mutation. Sixteen brain banks contributed cases meeting histopathological criteria for frontotemporal lobar degeneration and a clinical diagnosis of behavioural variant frontotemporal dementia, Alzheimer’s disease, dementia with Lewy bodies or vascular dementia at presentation. Cases with predominant primary progressive aphasia or extra-pyramidal syndromes were excluded. In these autopsy-confirmed cases, an experienced neurologist or psychiatrist ascertained clinical features necessary for making a diagnosis according to previous and proposed criteria at presentation. Of 137 cases where features were available for both proposed and previously established criteria, 118 (86%) met ‘possible’ criteria, and 104 (76%) met criteria for ‘probable’ behavioural variant frontotemporal dementia. In contrast, 72 cases (53%) met previously established criteria for the syndrome (P < 0.001 for comparison with ‘possible’ and ‘probable’ criteria). Patients who failed to meet revised criteria were significantly older and most had atypical presentations with marked memory impairment. In conclusion, the revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotemporal lobar degeneration. Greater sensitivity of the proposed criteria may reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations. Future studies will be needed to establish the reliability and specificity of these revised diagnostic guidelines.
PMCID: PMC3170532  PMID: 21810890
behavioural variant frontotemporal dementia; diagnostic criteria; frontotemporal lobar degeneration; FTD; pathology
16.  The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features 
Neurobiology of Aging  2012;33(9):2231.e7-2231.e14.
Microtubule-associated protein tau (MAPT) mutations have been shown to underlie frontotemporal dementia and a variety of additional sporadic tauopathies. We identified a rare p.A152T variant in MAPT exon 7 in two (of eight) patients with clinical presentation of parkinsonism and postmortem finding of neurofibrillary tangle pathology. Two siblings of one patient also carried the p.A152T variant, and both have progressive cognitive impairment. Further screening identified the variant in two other cases: one with pathologically confirmed corticobasal degeneration and another with the diagnosis of Parkinson's disease with dementia. The balance of evidence suggests this variant is associated with disease, but the very varied phenotype of the cases with the mutation is not consistent with it being a fully penetrant pathogenic mutation. Interestingly, this variation results in the creation of a new phosphorylation site that could cause reduced microtubule binding. We suggest that the A152T variant is a risk factor associated with the development of atypical neurodegenerative conditions with abnormal tau accumulation.
PMCID: PMC3657164  PMID: 22595371
MAPT; Parkinsonism; Corticobasal degeneration; Genetics; Postencephalitic parkinsonism
17.  Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration 
Archives of neurology  2011;68(4):488-497.
To assess the relative frequency of unique mutations and their associated characteristics in 97 individuals with mutations in progranulin (GRN), an important cause of frontotemporal lobar degeneration (FTLD).
Participants and Design
A 46-site International Frontotemporal Lobar Degeneration Collaboration was formed to collect cases of FTLD with TAR DNA-binding protein of 43-kDa (TDP-43)–positive inclusions (FTLD-TDP). We identified 97 individuals with FTLD-TDP with pathogenic GRN mutations (GRN+ FTLD-TDP), assessed their genetic and clinical characteristics, and compared them with 453 patients with FTLD-TDP in which GRN mutations were excluded (GRN− FTLD-TDP). No patients were known to be related. Neuropathologic characteristics were confirmed as FTLD-TDP in 79 of the 97 GRN+ FTLDTDP cases and all of the GRN− FTLD-TDP cases.
Age at onset of FTLD was younger in patients with GRN+ FTLD-TDP vs GRN− FTLD-TDP (median, 58.0 vs 61.0 years; P<.001), as was age at death (median, 65.5 vs 69.0 years; P<.001). Concomitant motor neuron disease was much less common in GRN+ FTLDTDP vs GRN− FTLD-TDP (5.4% vs 26.3%; P<.001). Fifty different GRN mutations were observed, including 2 novel mutations: c.139delG (p.D47TfsX7) and c.378C>A (p.C126X). The 2 most common GRN mutations were c.1477C>T (p.R493X, found in 18 patients, representing 18.6% of GRN cases) and c.26C>A (p.A9D, found in 6 patients, representing 6.2% of cases). Patients with the c.1477C>T mutation shared a haplotype on chromosome 17; clinically, they resembled patients with other GRN mutations. Patients with the c.26C>A mutation appeared to have a younger age at onset of FTLD and at death and more parkinsonian features than those with other GRN mutations.
GRN+ FTLD-TDP differs in key features from GRN− FTLD-TDP.
PMCID: PMC3160280  PMID: 21482928
18.  Alzheimer's pathology in primary progressive aphasia 
Neurobiology of Aging  2012;33(4-2):744-752.
Primary progressive aphasia (PPA) is a neurodegenerative disorder with language impairment as the primary feature. Different subtypes have been described and the 3 best characterized are progressive nonfluent aphasia (PNFA), semantic dementia (SD) and logopenic/phonological aphasia (LPA). Of these subtypes, LPA is most commonly associated with Alzheimer's disease (AD) pathology. However, the features of PPA associated with AD have not been fully defined. Here we retrospectively identified 14 patients with PPA and either pathologically confirmed AD or cerebrospinal fluid (CSF) biomarkers consistent with AD. Analysis of neurological and neuropsychological features revealed that all patients had a syndrome of LPA with relatively nonfluent spontaneous speech, phonemic errors, and reduced digit span; most patients also had impaired verbal episodic memory. Analysis of the pattern of cortical thinning in these patients revealed left posterior superior temporal, inferior parietal, medial temporal, and posterior cingulate involvement and in patients with more severe disease, increasing involvement of left anterior temporal and frontal cortices and right hemisphere areas in the temporo-parietal junction, posterior cingulate, and medial temporal lobe. We propose that LPA may be a “unihemispheric” presentation of AD, and discuss this concept in relation to accumulating evidence concerning language dysfunction in AD.
PMCID: PMC3314936  PMID: 20580129
Frontotemporal dementia; Frontotemporal lobar degeneration; Primary progressive aphasia; Logopenic aphasia; Progressive nonfluent aphasia; Alzheimer's disease
19.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study 
Lancet Neurology  2012;11(4):323-330.
We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).
We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion.
In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years.
A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases.
Full funding sources listed at end of paper (see Acknowledgments).
PMCID: PMC3322422  PMID: 22406228
20.  Disintegrating Brain Networks: from Syndromes to Molecular Nexopathies 
Neuron  2012;73(6):1060-1062.
In this issue of Neuron, Raj et al. (2012) and Zhou et al. (2012) use graph theory to suggest that neurodegenerative diseases spread diffusively via intrinsic brain networks. These studies provide a powerful model for understanding and predicting disease-specific profiles of neurodegeneration.
PMCID: PMC3389343  PMID: 22445334
21.  Novel L284R MAPT Mutation in a Family with an Autosomal Dominant Progressive Supranuclear Palsy Syndrome 
Neuro-Degenerative Diseases  2010;8(3):149-152.
MAPT mutations are associated with disorders within the frontotemporal lobar degeneration spectrum. The usual presenting syndrome is behavioural variant frontotemporal dementia, although some patients present with parkinsonism. In a number of these cases the dominant clinical features have been consistent with a progressive supranuclear palsy (PSP) syndrome.
To describe a family with an autosomal dominant PSP syndrome with a novel L284R mutation in the MAPT gene.
A retrospective case review and genetic analysis of the MAPT gene. A literature review of PSP syndromes associated with mutations in the MAPT gene.
Multiple members of family DRC292 across different generations had a PSP syndrome with 1 member of the family being found to have a novel L284R mutation in the MAPT gene. Behavioural features were also prominent in most cases. A PSP syndrome is only a rare finding associated with MAPT mutations and many of these cases have atypical clinical features.
Although rare, MAPT mutations should be considered when there is an autosomal dominant family history of a PSP syndrome, particularly of young onset and with prominent behavioural features.
PMCID: PMC3078284  PMID: 20838030
Frontotemporal dementia; Progressive supranuclear palsy; Tau
22.  Receptive prosody in nonfluent primary progressive aphasias 
Prosody has been little studied in the primary progressive aphasias (PPAs), a group of neurodegenerative disorders presenting with progressive language impairment.
Here we conducted a systematic investigation of different dimensions of prosody processing (acoustic, linguistic and emotional) in a cohort of 19 patients with nonfluent PPA syndromes (11 with progressive nonfluent aphasia, PNFA; five with progressive logopenic/phonological aphasia, LPA; three with progranulin-associated aphasia, GRN-PPA) compared with a group of healthy older controls. Voxel-based morphometry (VBM) was used to identify neuroanatomical associations of prosodic functions.
Broadly comparable receptive prosodic deficits were exhibited by the PNFA, LPA and GRN-PPA subgroups, for acoustic, linguistic and affective dimensions of prosodic analysis. Discrimination of prosodic contours was significantly more impaired than discrimination of simple acoustic cues, and discrimination of intonation was significantly more impaired than discrimination of stress at phrasal level. Recognition of vocal emotions was more impaired than recognition of facial expressions for the PPA cohort, and recognition of certain emotions (in particular, disgust and fear) was relatively more impaired than others (sadness, surprise). VBM revealed atrophy associated with acoustic and linguistic prosody impairments in a distributed cortical network including areas likely to be involved in perceptual analysis of vocalisations (posterior temporal and inferior parietal cortices) and working memory (fronto-parietal circuitry). Grey matter associations of emotional prosody processing were identified for negative emotions (disgust, fear, sadness) in a broadly overlapping network of frontal, temporal, limbic and parietal areas.
Taken together, the findings show that receptive prosody is impaired in nonfluent PPA syndromes, and suggest a generic early perceptual deficit of prosodic signal analysis with additional relatively specific deficits (recognition of particular vocal emotions).
PMCID: PMC3275751  PMID: 21047627
Primary progressive aphasia; Frontotemporal dementia; Frontotemporal lobar degeneration; Logopenic aphasia; Progranulin; Prosody
23.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features 
Brain  2012;135(3):736-750.
An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases with C9ORF72 mutation from the frontotemporal lobar degeneration series identified histomorphological features consistent with either type A or B TAR DNA-binding protein-43 deposition; however, p62-positive (in excess of TAR DNA-binding protein-43 positive) neuronal cytoplasmic inclusions in hippocampus and cerebellum were a consistent feature of these cases, in contrast to the similar frequency of p62 and TAR DNA-binding protein-43 deposition in 53 control cases with frontotemporal lobar degeneration–TAR DNA-binding protein. These findings corroborate the clinical importance of the C9ORF72 mutation in frontotemporal lobar degeneration, delineate phenotypic and neuropathological features that could help to guide genetic testing, and suggest hypotheses for elucidating the neurobiology of a culprit subcortical network.
PMCID: PMC3286330  PMID: 22366791
frontotemporal lobar degeneration; motor neuron disease; neurodegenerative disorders; neuroimaging; genetics
24.  Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration 
Brain  2011;134(9):2565-2581.
Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Pick's disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Pick's disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.
PMCID: PMC3170537  PMID: 21908872
frontotemporal dementia; frontotemporal lobar degeneration; voxel-based morphometry; MRI; neural network
25.  Syndromes of nonfluent primary progressive aphasia 
Neurology  2010;75(7):603-610.
Despite recent work, the nosology of nonfluent primary progressive aphasia (PPA) remains unresolved.
We describe a clinical and neurolinguistic cross-sectional analysis of a cohort of 24 patients with nonfluent PPA. Patients were initially classified based on analysis of spontaneous speech into 4 groups: apraxia of speech (AOS)/agrammatism (10 patients); AOS/no agrammatism (4 patients); no AOS/agrammatism (3 patients); no AOS/no agrammatism (7 patients). These groups were further characterized using a detailed neurolinguistic and neuropsychological battery. Parkinsonism was present in 3/10 patients in the AOS/agrammatism group. All patients in the no AOS/agrammatism group had mutations in the progranulin (GRN) gene, while 5/7 cases in the no AOS/no agrammatism group had CSF findings compatible with Alzheimer disease.
The groups without AOS showed more severe neurolinguistic impairments for a given disease stage, and sentence comprehension, speech repetition, and reading were impaired in all groups. Prolonged word-finding pauses and impaired single word comprehension were salient features in the no AOS/agrammatism group. Additional impairments of executive function and praxis were present in both groups with agrammatism, and impaired episodic memory was a feature of the no AOS/no agrammatism group.
PPA with AOS is aligned with the syndrome previously designated progressive nonfluent aphasia; agrammatism may emerge as the syndrome evolves, or alternatively, the pure AOS group may be pathophysiologically distinct. PPA without AOS resembles the syndrome designated logopenic/phonologic aphasia; however, there is evidence for a distinct subsyndrome of GRN-associated aphasia. The findings provide a rationale for further longitudinal studies with pathologic correlation.
= Alzheimer disease;
= apraxia of speech;
= Clinical Dementia Rating–sum of boxes;
= logopenic progressive aphasia;
= Mini-Mental State Examination score;
= progressive nonfluent aphasia;
= primary progressive aphasia;
= semantic dementia.
PMCID: PMC2931766  PMID: 20713949

Results 1-25 (53)