PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Large-scale replication and heterogeneity in Parkinson disease genetic loci 
Sharma, Manu | Ioannidis, John P.A. | Aasly, Jan O. | Annesi, Grazia | Brice, Alexis | Van Broeckhoven, Christine | Bertram, Lars | Bozi, Maria | Crosiers, David | Clarke, Carl | Facheris, Maurizio | Farrer, Matthew | Garraux, Gaetan | Gispert, Suzana | Auburger, Georg | Vilariño-Güell, Carles | Hadjigeorgiou, Georgios M. | Hicks, Andrew A. | Hattori, Nobutaka | Jeon, Beom | Lesage, Suzanne | Lill, Christina M. | Lin, Juei-Jueng | Lynch, Timothy | Lichtner, Peter | Lang, Anthony E. | Mok, Vincent | Jasinska-Myga, Barbara | Mellick, George D. | Morrison, Karen E. | Opala, Grzegorz | Pramstaller, Peter P. | Pichler, Irene | Park, Sung Sup | Quattrone, Aldo | Rogaeva, Ekaterina | Ross, Owen A. | Stefanis, Leonidas | Stockton, Joanne D. | Satake, Wataru | Silburn, Peter A. | Theuns, Jessie | Tan, Eng-King | Toda, Tatsushi | Tomiyama, Hiroyuki | Uitti, Ryan J. | Wirdefeldt, Karin | Wszolek, Zbigniew | Xiromerisiou, Georgia | Yueh, Kuo-Chu | Zhao, Yi | Gasser, Thomas | Maraganore, Demetrius | Krüger, Rejko | Boyle, R.S | Sellbach, A | O'Sullivan, J.D. | Sutherland, G.T. | Siebert, G.A | Dissanayaka, N.N.W | Van Broeckhoven, Christine | Theuns, Jessie | Crosiers, David | Pickut, Barbara | Engelborghs, Sebastiaan | Meeus, Bram | De Deyn, Peter P. | Cras, Patrick | Rogaeva, Ekaterina | Lang, Anthony E | Agid, Y | Anheim, M | Bonnet, A-M | Borg, M | Brice, A | Broussolle, E | Corvol, JC | Damier, P | Destée, A | Dürr, A | Durif, F | Lesage, S | Lohmann, E | Pollak, P | Rascol, O | Tison, F | Tranchant, C | Viallet, F | Vidailhet, M | Tzourio, Christophe | Amouyel, Philippe | Loriot, Marie-Anne | Mutez, Eugénie | Duflot, Aurélie | Legendre, Jean-Philippe | Waucquier, Nawal | Gasser, Thomas | Riess, Olaf | Berg, Daniela | Schulte, Claudia | Klein, Christine | Djarmati, Ana | Hagenah, Johann | Lohmann, Katja | Auburger, Georg | Hilker, Rüdiger | van de Loo, Simone | Dardiotis, Efthimios | Tsimourtou, Vaia | Ralli, Styliani | Kountra, Persa | Patramani, Gianna | Vogiatzi, Cristina | Hattori, Nobutaka | Tomiyama, Hiroyuki | Funayama, Manabu | Yoshino, Hiroyo | Li, Yuanzhe | Imamichi, Yoko | Toda, Tatsushi | Satake, Wataru | Lynch, Tim | Gibson, J. Mark | Valente, Enza Maria | Ferraris, Alessandro | Dallapiccola, Bruno | Ialongo, Tamara | Brighina, Laura | Corradi, Barbara | Piolti, Roberto | Tarantino, Patrizia | Annesi, Ferdinanda | Jeon, Beom S. | Park, Sung-Sup | Aasly, J | Opala, Grzegorz | Jasinska-Myga, Barbara | Klodowska-Duda, Gabriela | Boczarska-Jedynak, Magdalena | Tan, Eng King | Belin, Andrea Carmine | Olson, Lars | Galter, Dagmar | Westerlund, Marie | Sydow, Olof | Nilsson, Christer | Puschmann, Andreas | Lin, JJ | Maraganore, Demetrius M. | Ahlskog, J, Eric | de Andrade, Mariza | Lesnick, Timothy G. | Rocca, Walter A. | Checkoway, Harvey | Ross, Owen A | Wszolek, Zbigniew K. | Uitti, Ryan J.
Neurology  2012;79(7):659-667.
Objective:
Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown.
Methods:
Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry.
Results:
In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78–0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14–1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I2 estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD.
Conclusion:
Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. Neurology® 2012;79:659–667
doi:10.1212/WNL.0b013e318264e353
PMCID: PMC3414661  PMID: 22786590
2.  The protective effect of LRRK2 p.R1398H on risk of Parkinson’s disease is independent of MAPT and SNCA variants 
Neurobiology of aging  2013;35(1):10.1016/j.neurobiolaging.2013.07.013.
The best validated susceptibility variants for Parkinson’s disease (PD) are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined four SNCA variants (rs181489, rs356219, rs11931074, rs2583988), the MAPT H1-haplotype defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (N=10,322) and Asian (N=2,289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all P≥0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with PD is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations.
doi:10.1016/j.neurobiolaging.2013.07.013
PMCID: PMC3829604  PMID: 23962496
Parkinson disease; LRRK2; SNCA; MAPT; interaction; genetics
3.  Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease 
Neurology  2014;83(21):1906-1913.
Objectives:
The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO-PD) cohort.
Methods:
C9orf72 (G4C2)n repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia.
Results:
A pathogenic (G4C2)n>60 expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G4C2)n repeats; however, we could not detect a robust association between the C9orf72 (G4C2)n repeat and PD, and the population attributable risk was low.
Conclusions:
Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease.
doi:10.1212/WNL.0000000000001012
PMCID: PMC4248456  PMID: 25326098
4.  Novel A18T and pA29S substitutions in α-synuclein may be associated with sporadic Parkinson's disease 
Parkinsonism & related disorders  2013;19(11):1057-1060.
Objective
Mutations in the α-synuclein-encoding gene SNCA are considered as a rare cause of Parkinson's disease (PD). Our objective was to examine the frequency of the SNCA point mutations among PD patients of Polish origin.
Methods
Detection of the known SNCA point mutations A30P (c.88G>C), E46K (c.136G>A) and A53T (c.157A>T) was performed either using the Sequenom MassArray iPLEX platform or by direct sequencing of the SNCA exons 2 and 3. As the two novel substitutions A18T (c.52G>A) and A29S (c.85G>T) were identified, their frequency in a control population of Polish origin was assessed and in silico analysis performed to investigate the potential impact on protein structure and function.
Results
We did not observe the previously reported point mutations in the SNCA gene in our 629 PD patients; however, two novel potentially pathogenic substitutions A18T and A29S were identified. Each variant was observed in a single patient presenting with a typical late-onset sporadic PD phenotype. Although neither variant was observed in control subjects and in silico protein analysis predicts a damaging effect for A18T and pA29S substitutions, the lack of family history brings into question the true pathogenicity of these rare variants.
Conclusions
Larger population based studies are needed to determine the pathogenicity of the A18T and A29S substitutions. Our findings highlight the possible role of rare variants contributing to disease risk and may support further screening of the SNCA gene in sporadic PD patients from different populations.
doi:10.1016/j.parkreldis.2013.07.011
PMCID: PMC4055791  PMID: 23916651
α-synuclein; SNCA gene; Parkinson's disease; Genetic etiology; Missense mutations
5.  Population-specific frequencies for LRRK2 susceptibility variants in the Genetic Epidemiology Of Parkinson’s Disease (GEO-PD) consortium 
Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson’s disease. Leucine-rich repeat kinase 2 variation related to susceptibility to disease displays many features that reflect the nature of complex late-onset sporadic disorders, such as Parkinson’s disease. The Genetic Epidemiology of Parkinson’s disease consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. Herein we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) reported in the original publication. Simple population allele frequencies can not only provide an insight into the clinical relevance of specific variants but also help genetically define patient groups. Establishing individual patient-based genomic susceptibility profiles incorporating both risk and protective factors will determine future diagnostic and treatment strategies.
doi:10.1002/mds.25600
PMCID: PMC4108155  PMID: 23913756
Parkinson disease; LRRK2; genetics; association study
6.  GWAS risk factors in Parkinson’s disease: LRRK2 coding variation and genetic interaction with PARK16  
Parkinson’s disease (PD) is a multifactorial movement disorder characterized by progressive neurodegeneration. Genome-wide association studies (GWAS) have nominated over fifteen distinct loci associated with risk of PD, however the biological mechanisms by which these loci influence disease risk are mostly unknown. GWAS are only the first step in the identification of disease genes: the specific causal variants responsible for the risk within the associated loci and the interactions between them must be identified to fully comprehend their impact on the development of PD. In the present study, we first attempted to replicate the association signals of 17 PD GWAS loci in our series of 1381 patients with PD and 1328 controls. BST1, SNCA, HLA-DRA, CCDC62/HIP1R and MAPT all showed a significant association with PD under different models of inheritance and LRRK2 showed a suggestive association. We then examined the role of coding LRRK2 variants in the GWAS association signal for that gene. The previously identified LRRK2 risk mutant p.M1646T and protective haplotype p.N551K-R1398H-K1423K did not explain the association signal of LRRK2 in our series. Finally, we investigated the gene-gene interaction between PARK16 and LRRK2 that has previously been proposed. We observed no interaction between PARK16 and LRRK2 GWAS variants, but did observe a non-significant trend toward interaction between PARK16 and LRRK2 variants within the protective haplotype. Identification of causal variants and the interactions between them is the crucial next step in making biological sense of the massive amount of data generated by GWAS studies. Future studies combining larger sample sizes will undoubtedly shed light on the complex molecular interplay leading to the development of PD.
PMCID: PMC3852568  PMID: 24319646
Association studies in genetics; Parkinson’s disease/Parkinsonism
7.  TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease 
Background
A rare variant in the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) gene has been reported to be a genetic risk factor for Alzheimer’s disease by two independent groups (Odds ratio between 2.9-4.5). Given the key role of TREM2 in the effective phagocytosis of apoptotic neuronal cells by microglia, we hypothesized that dysfunction of TREM2 may play a more generalized role in neurodegeneration. With this in mind we set out to assess the genetic association of the Alzheimer’s disease-related risk variant in TREM2 (rs75932628, p.R47H) with other related neurodegenerative disorders.
Results
The study included 609 patients with frontotemporal dementia, 765 with amyotrophic lateral sclerosis, 1493 with Parkinson’s disease, 772 with progressive supranuclear palsy, 448 with ischemic stroke and 1957 controls subjects free of neurodegenerative disease. A significant association was observed for the TREM2 p.R47H substitution in susceptibility to frontotemporal dementia (OR = 5.06; p-value = 0.001) and Parkinson’s disease (OR = 2.67; p-value = 0.026), while no evidence of association with risk of amyotrophic lateral sclerosis, progressive supranuclear palsy or ischemic stroke was observed.
Conclusions
Our results suggest that the TREM2 p.R47H substitution is a risk factor for frontotemporal dementia and Parkinson’s disease in addition to Alzheimer’s disease. These findings suggest a more general role for TREM2 dysfunction in neurodegeneration, which could be related to its role in the immune response.
doi:10.1186/1750-1326-8-19
PMCID: PMC3691612  PMID: 23800361
TREM2; Frontotemporal dementia; Parkinson disease; Genetic association
8.  PARK2 variability in Polish Parkinson’s disease patients - interaction with mitochondrial haplogroups 
Parkinsonism & related disorders  2012;18(5):520-524.
Aims and objectives
A new pathomechanism of Parkinson’s disease (PD) involving regulation of mitochondrial functions was recently proposed. Parkin complexed with mitochondrial transcription factor A (TFAM) binds mtDNA and promotes mitochondrial biogenesis, which is abolished by PARK2 gene mutations. We have previously shown that mitochondrial haplogroups/clusters and TFAM common variation influenced PD risk. We investigate the role of PARK2 polymorphisms on PD risk and their interactions with mitochondrial haplogroups/clusters as well as with TFAM variability.
Methods
104 early-onset PD patients (EOPD, age at onset ≤ 50 years) were screened for PARK2 coding sequence changes including gene dosage alterations. Three selected PARK2 polymorphisms (S167N, V380L, D394N) were genotyped in 326 PD patients and 315 controls using TaqMan allelic discrimination assay.
Results
PARK2 screen revealed two heterozygous changes in two EOPD patients: exon 2 deletion and one novel synonymous variation (c.999C>A, P333P).
In association study no differences in genotype/allele frequencies of S167N, V380L, D394N were found between analyzed groups. Stratification by mitochondrial clusters revealed higher frequency of V380L G/G genotype and allele G in PD patients, within HV cluster (p=0.040; p=0.022, respectively). Moreover, interaction between genotypes G/G V380L of PARK2 and G/G rs2306604 of TFAM, within HV cluster was significant (OR 2.05; CI 1.04 – 4.04; p=0.038).
Conclusions
Our results indicate that co-occurence of G/G V380L PARK2 and G/G rs2306604 TFAM on the prooxidative HV cluster background can contribute to PD risk. We confirm low PARK2 mutation frequency in Polish EOPD patients.
doi:10.1016/j.parkreldis.2012.01.021
PMCID: PMC3358581  PMID: 22361577
Parkinson’s disease risk factors; PARK2; mitochondrial clusters; mitochondrial transcription factor A (TFAM)
9.  Familial Parkinson's disease iPSCs show cellular deficits in mitochondrial responses that can be pharmacologically rescued 
Science translational medicine  2012;4(141):141ra90.
Parkinson's disease (PD) is a common neurodegenerative disease caused by genetic and environmental factors. We analyzed induced pluripotent stem cell (iPSC)-derived neural cells from PD patients and presymptomatic individuals carrying mutations in the PINK1 and LRRK2 genes, and healthy control subjects. We measured several aspects of mitochondrial responses in the iPSC-derived neural cells including production of reactive oxygen species, mitochondrial respiration, proton leakage and intraneuronal movement of mitochondria. Cellular vulnerability associated with mitochondrial function in iPSC-derived neural cells from PD patients and at-risk individuals could be rescued with coenzyme Q10, rapamycin or the LRRK2 kinase inhibitor GW5074. Analysis of mitochondrial responses in iPSC-derived neural cells from PD patients carrying different mutations provides insights into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in PD.
doi:10.1126/scitranslmed.3003985
PMCID: PMC3462009  PMID: 22764206
10.  A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants 
Journal of Medical Genetics  2012;49(11):721-726.
Background
Two recent studies identified a mutation (p.Asp620Asn) in the vacuolar protein sorting 35 gene as a cause for an autosomal dominant form of Parkinson disease . Although additional missense variants were described, their pathogenic role yet remains inconclusive.
Methods and results
We performed the largest multi-center study to ascertain the frequency and pathogenicity of the reported vacuolar protein sorting 35 gene variants in more than 15,000 individuals worldwide. p.Asp620Asn was detected in 5 familial and 2 sporadic PD cases and not in healthy controls, p.Leu774Met in 6 cases and 1 control, p.Gly51Ser in 3 cases and 2 controls. Overall analyses did not reveal any significant increased risk for p.Leu774Met and p.Gly51Ser in our cohort.
Conclusions
Our study apart from identifying the p.Asp620Asn variant in familial cases also identified it in idiopathic Parkinson disease cases, and thus provides genetic evidence for a role of p.Asp620Asn in Parkinson disease in different populations worldwide.
doi:10.1136/jmedgenet-2012-101155
PMCID: PMC3488700  PMID: 23125461
Parkinson-s disease; Genome-wide; Genetics; Genetic epidemiology; Complex traits
11.  LRRK2 exonic variants and susceptibility to Parkinson’s disease 
Lancet neurology  2011;10(10):898-908.
Background
Leucine-rich repeat kinase 2 (LRRK2) is known to harbor highly penetrant mutations linked to familial parkinsonism. However, its full polymorphic variability in relationship to Parkinson’s disease (PD) risk has not been systematically assessed.
Methods
We examined the frequency pathogenicity of 121 exonic LRRK2 variants in three ethnic series (Caucasian [N=12,590], Asian [N=2,338] and Arab-Berber [N=612]) consisting of 8,611 patients and 6,929 control subjects from 23 separate sites of the Genetic Epidemiology of Parkinson’s Disease Consortium.
Findings
Excluding carriers of previously known pathogenic mutations, new independent risk associations were found for polymorphic variants in Caucasian (p.M1646T, OR: 1.43, 95% CI: 1.15 – 1.78, P=0.0012) and Asian (p.A419V, OR: 2.27, 95% CI: 1.35 – 3.83, P=0.0011) populations. In addition, a protective haplotype was observed at >5% frequency (p.N551K-p.R1398H-p.K1423K) in the Caucasian and Asian series’, with a similar finding in the small Arab-Berber series that requires further study (combined 3-series OR: 0.82, 95% CI: 0.72 – 0.94, P=0.0043). Of the two previously reported Asian risk variants p.G2385R was found to be associated with disease (OR: 1.73, 95% CI: 1.20 – 2.49, P=0.0026) but no association was observed for p.R1628P (OR: 0.62, 95% CI: 0.36 – 1.07, P=0.087). Also in the Arab-Berber series, p.Y2189C showed potential evidence of risk association with PD (OR: 4.48, 95% CI: 1.33 – 15.09, P=0.012). Of note, two variants (p.I1371V and p.T2356I) which have been previously proposed as pathogenic were observed in patient and control subjects at the same frequency.
Interpretation
LRRK2 offers an example where multiple rare and common genetic variants in the same gene have independent effects on disease risk. Lrrk2, and the pathway in which it functions, is important in the etiology and pathogenesis of a greater proportion of patients with PD than previously believed.
Funding
The present study and original funding for the GEO-PD Consortium was supported by grants from Michael J. Fox Foundation. Studies at individual sites were supported by a number of funding agencies world-wide.
doi:10.1016/S1474-4422(11)70175-2
PMCID: PMC3208320  PMID: 21885347
Parkinson disease; LRRK2; genetics
12.  Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research 
PLoS ONE  2012;7(8):e43099.
Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community.
doi:10.1371/journal.pone.0043099
PMCID: PMC3428297  PMID: 22952635
13.  Human leukocyte antigen variation and Parkinson’s disease 
Parkinsonism & related disorders  2011;17(5):376-378.
A role for the immune system in the pathogenesis of Parkinson’s Disease (PD) has previously been suggested. A recent genome-wide association (GWA) study identified an association between one single nucleotide polymorphism (SNP) in the human leucocyte antigen (HLA) region (HLA-DRA rs3129882) and PD in a population of American patients with European ancestry. In that study, the minor rs3129882 allele (G) was associated with an increased risk of PD under an additive model. Due to the increased likelihood of obtaining false positive results in GWA studies compared to studies conducted based on a hypothesis-driven approach, repeated validation of findings from GWA studies are necessary. Herein, we evaluated the association between rs3129882 and PD in three different Caucasian patient-control series (combined 1,313 patients and 1,305 controls) from the US, Ireland, and Poland. We observed no association (OR: 0.96, P=0.50) between rs3129882 and PD when analyzing our data under an additive or dominant model. In contrast, when examined under a recessive model, the GG genotype was observed to be protective in the Irish (OR: 0.55, P=0.008), Polish (OR: 0.67, P=0.040) and combined (OR: 0.75, P=0.006) patient-control series. In view of these diverging results, the exact role of genetic variation at the HLA region and susceptibility to PD remains to be resolved.
doi:10.1016/j.parkreldis.2011.03.008
PMCID: PMC3109190  PMID: 21482477
Association studies; Parkinson’s disease; Human leukocyte antigen; HLA; HLA-DRA; Immune system; Genetics
14.  Independent and joint effects of the MAPT and SNCA genes in Parkinson's disease 
Annals of neurology  2011;69(5):778-792.
Objective
We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule associated protein tau (MAPT) in Parkinson's disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium.
Methods
Participants of Caucasian ancestry were genotyped for a total of four SNCA (rs2583988, rs181489, rs356219, rs11931074) and two MAPT (rs1052553, rs242557) SNPs. Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied both on a multiplicative and an additive scale, and using a case-control and case-only approach.
Results
Fifteen GEO-PD sites contributed a total of 5302 cases and 4161 controls. All four SNCA SNPs and the MAPT H1-haplotype defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 3′ end of the gene. There was no evidence of statistical interaction between any of the four SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale.
Interpretation
This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these two loci is consistent with independent effects of the genes without additional interacting effects.
doi:10.1002/ana.22321
PMCID: PMC3082599  PMID: 21391235
Parkinson disease; SNCA; MAPT; genetics; interaction; case-control
15.  Genetic variation of Omi/HtrA2 and Parkinson’s disease 
Parkinsonism & related disorders  2008;14(7):539-543.
Variants in the Omi/HtrA2 gene have been nominated as a cause of Parkinson’s disease. This sequencing study of Omi/HtrA2 in 95 probands with apparent autosomal dominant inheritance of Parkinson’s disease did not identify any pathogenic mutations. In addition, there was no association between common variations in the Omi/HtrA2 gene and susceptibility to Parkinson’s disease in any of our four patient-control series (n=2373). Taken together our results do not support a role for Omi/HtrA2 variants in the pathogenesis of Parkinson’s disease.
doi:10.1016/j.parkreldis.2008.08.003
PMCID: PMC2614082  PMID: 18790661
PARK13; PD; HtrA2; mitochondria; neurodegeneration
16.  Dopamine β-hydroxylase -1021C>T association and Parkinson’s disease 
Parkinsonism & related disorders  2008;14(7):544-547.
A single nucleotide polymorphism in the promoter region of the dopamine β-hydroxylase gene (DBH -1021C>T; rs1611115) is reported to regulate plasma enzyme activity levels. This variant has also been the focus of two large association studies in Parkinson’s disease yielding conflicting results. We examined this association in four Caucasian patient-control series (n=2696). A modest protective association was observed in the Norwegian series (OR=0.81, p=0.03; n=1676), however the effect was in the opposite direction in the Polish series (OR=2.01, p=0.01; n=224). No association was observed for DBH -1021C>T with disease susceptibility in the US and Irish series, or combining all four series (OR=0.91, p=0.16, n=2696). We observed a modest association between DBH -1021C>T and AAO in the combined series (p=0.01). Taken together, these findings indicate that DBH -1021C>T does not play a major role in the pathogenesis of Parkinson’s disease.
doi:10.1016/j.parkreldis.2008.07.002
PMCID: PMC2592561  PMID: 18722802
Genetics; PD; DBH; promoter SNP

Results 1-16 (16)