PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (57)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
author:("Levy, spawn")
1.  A neurodegeneration-specific gene expression signature and immune profile of acutely isolated microglia from an ALS mouse model 
Cell reports  2013;4(2):385-401.
Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury and inflammation. Here we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of ALS. We find that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors are concurrently up-regulated, including Alzheimer’s disease genes. Mutant microglia differed from SOD1WT, LPS activated microglia, and M1/M2 macrophages, that define an ALS-specific phenotype. Concurrent mRNA/FACS analysis revealed post-transcriptional regulation of microglia surface receptors, and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.
doi:10.1016/j.celrep.2013.06.018
PMCID: PMC4272581  PMID: 23850290
Microglia; transcriptome; FACS; ALS; neuroimmunology; neurodegeneration
2.  Multi-platform and cross-methodological reproducibility of transcriptome profiling by RNA-seq in the ABRF Next-Generation Sequencing Study 
Nature biotechnology  2014;32(9):915-925.
High-throughput RNA sequencing (RNA-seq) dramatically expands the potential for novel genomics discoveries, but the wide variety of platforms, protocols and performance has created the need for comprehensive reference data. Here we describe the Association of Biomolecular Resource Facilities next-generation sequencing (ABRF-NGS) study on RNA-seq. We tested replicate experiments across 15 laboratory sites using reference RNA standards to test four protocols (polyA-selected, ribo-depleted, size-selected and degraded) on five sequencing platforms (Illumina HiSeq, Life Technologies’ PGM and Proton, Pacific Biosciences RS and Roche’s 454). The results show high intra-platform and inter-platform concordance for expression measures across the deep-count platforms, but highly variable efficiency and cost for splice junction and variant detection between all platforms. These data also demonstrate that ribosomal RNA depletion can both enable effective analysis of degraded RNA samples and be readily compared to polyA-enriched fractions. This study provides a broad foundation for cross-platform standardization, evaluation and improvement of RNA-seq.
doi:10.1038/nbt.2972
PMCID: PMC4167418  PMID: 25150835
3.  Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA 
Biochemical and biophysical research communications  2013;440(1):10.1016/j.bbrc.2013.09.040.
Recent progress has been made in the identification of protein-coding genes and miRNAs that are expressed in and alter the behavior of colonic epithelia. However, the role of long non-coding RNAs (lncRNAs) in colonic homeostasis is just beginning to be explored. By gene expression profiling of post-mitotic, differentiated tops and proliferative, progenitor-compartment bottoms of microdissected adult mouse colonic crypts, we identified several lncRNAs more highly expressed in crypt bottoms. One identified lncRNA, designated non-coding Nras functional RNA (ncNRFR), resides within the Nras locus but appears to be independent of the Nras coding transcript. Stable overexpression of ncNRFR in non-transformed, conditionally immortalized mouse colonocytes results in malignant transformation, as determined by growth in soft agar and formation of highly invasive tumors in nude mice. Moreover, ncNRFR appears to inhibit the function of the tumor suppressor let-7. These results suggest precise regulation of ncNRFR is necessary for proper cell growth in the colonic crypt, and its misregulation results in neoplastic transformation.
doi:10.1016/j.bbrc.2013.09.040
PMCID: PMC3875348  PMID: 24045012
Progenitor cells; Non-coding RNA; Colon; Intestine; Colorectal cancer; let-7
4.  Whole exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies 
Kidney international  2013;85(4):880-887.
Rare single-gene disorders cause chronic disease. However, half of the 6,000 recessive single gene causes of disease are still unknown. Because recessive disease genes can illuminate, at least in part, disease pathomechanism, their identification offers direct opportunities for improved clinical management and potentially treatment. Rare diseases comprise the majority of chronic kidney disease (CKD) in children but are notoriously difficult to diagnose. Whole exome resequencing facilitates identification of recessive disease genes. However, its utility is impeded by the large number of genetic variants detected. We here overcome this limitation by combining homozygosity mapping with whole exome resequencing in 10 sib pairs with a nephronophthisis-related ciliopathy, which represents the most frequent genetic cause of CKD in the first three decades of life. In 7 of 10 sib-ships with a histologic or ultrasonographic diagnosis of nephronophthisis-related ciliopathy we detect the causative gene. In six sib-ships we identify mutations of known nephronophthisis-related ciliopathy genes, while in two additional sib-ships we found mutations in the known CKD-causing genes SLC4A1 and AGXT as phenocopies of nephronophthisis-related ciliopathy. Thus whole exome resequencing establishes an efficient, non-invasive approach towards early detection and causation-based diagnosis of rare kidney diseases. This approach can be extended to other rare recessive disorders, thereby providing accurate diagnosis and facilitating the study of disease mechanisms.
doi:10.1038/ki.2013.450
PMCID: PMC3972265  PMID: 24257694
5.  Significance of Expression of ITGA5 and its Splice Variants in Acute Myeloid Leukemia: A Report from the Children’s Oncology Group 
American journal of hematology  2013;88(8):694-702.
Acute myeloid leukemia (AML) encompasses a heterogeneous group of diseases, and novel biomarkers for risk refinement and stratification are needed to optimize patient care. To identify novel risk factors, we performed transcriptome sequencing on 68 diagnostic AML samples and identified 2 transcript variants (−E2 and −E2/3) of the α-subunit (ITGA5) of the very late antigen-5 integrin. We then quantified expression of ITGA5 and these splice variants in specimens from participants of the AAML03P1 trial. We found no association between ITGA5 expression and clinical outcome. In contrast, patients with the highest relative expression (Q4) of the −E2/3 ITGA5 splice variant less likely had low-risk disease than Q1–3 patients (21% vs. 38%, P=0.027). Q4 patients had worse response to chemotherapy with a higher proportion having persistent minimal residual disease (50% vs. 23%, P=0.003) and inferior overall survival (at 5 years: 48% vs. 67%, P=0.015); the latter association was limited to low-risk patients (Q4 vs. Q1–3: 56% vs. 85%, P=0.043) and was not seen in standard-risk (51% vs. 60%, P=0.340) or high-risk (33% vs. 38%, P=0.952) patients. Our exploratory studies indicate that transcriptome sequencing is useful for biomarker discovery, as exemplified by the identification of ITGA5 −E2/3 splice variant as potential novel adverse prognostic marker for low-risk AML that, if confirmed, could serve to further risk-stratify this patient subset.
doi:10.1002/ajh.23486
PMCID: PMC3757130  PMID: 23686445
acute myeloid leukemia; ITGA5; prognostication; splice variants; transcriptome sequencing
6.  Gene Signature Distinguishes Patients with Chronic Ulcerative Colitis Harboring Remote Neoplastic Lesions 
Inflammatory bowel diseases  2013;19(3):10.1097/MIB.0b013e3182802bac.
Background
Individuals with ulcerative colitis (UC) are at increased risk for colorectal cancer. The standard method of surveillance for neoplasia in UC by colonoscopy is invasive and can miss flat lesions. We sought to identify a gene expression signature in non-dysplastic mucosa without active inflammation that could serve as a marker for remote neoplastic lesions.
Methods
Gene expression was analyzed by cDNA microarray in 5 normal controls, 4 UC patients without dysplasia, and 11 UC patients harboring remote neoplasia. Common gene ontology pathways of significantly differentially expressed genes were identified. Expression of genes which were progressively and significantly up-regulated from controls, to UC without neoplasia, to UC with remote neoplasia were evaluated by real time PCR. Several gene products were also examined by immunohistochemistry.
Results
468 genes were significantly up-regulated and 541 genes were significantly down-regulated in UC patints with neoplasia compared to UC patients without neoplasia. Nine genes (ACSL1, BIRC3, CLC, CREM, ELTD1, FGG, S100A9, THBD, and TPD52L1) were progressively and significantly up-regulated from controls to non-dysplastic UC to UC with neoplasia. Immunostaining of proteins revealed increased expression of S100A9 and REG1α in UC-associated cancer and in non-dysplastic tissue from UC patients harboring remote neoplasia, compared to UC patients without neoplasia and controls.
Conclusions
Gene expression changes occurring as a field effect in the distal colon of patients with chronic UC identify patients harboring remote neoplastic lesions. These markers may lead to a more accurate and less invasive method of detection of neoplasia in patients with inflammatory bowel disease.
doi:10.1097/MIB.0b013e3182802bac
PMCID: PMC3836269  PMID: 23388545
Inflammatory bowel disease; ulcerative colitis; dysplasia; colorectal cancer; gene expression
7.  Characterization of the Merkel Cell Carcinoma miRNome 
Journal of Skin Cancer  2014;2014:289548.
MicroRNAs have been implicated in various skin cancers, including melanoma, squamous cell carcinoma, and basal cell carcinoma; however, the expression of microRNAs and their role in Merkel cell carcinoma (MCC) have yet to be explored in depth. To identify microRNAs specific to MCC (MCC-miRs), next-generation sequencing (NGS) of small RNA libraries was performed on different tissue samples including MCCs, other cutaneous tumors, and normal skin. Comparison of the profiles identified several microRNAs upregulated and downregulated in MCC. For validation, their expression was measured via qRT-PCR in a larger group of MCC and in a comparison group of non-MCC cutaneous tumors and normal skin. Eight microRNAs were upregulated in MCC: miR-502-3p, miR-9, miR-7, miR-340, miR-182, miR-190b, miR-873, and miR-183. Three microRNAs were downregulated: miR-3170, miR-125b, and miR-374c. Many of these MCC-miRs, the miR-183/182/96a cistron in particular, have connections to tumorigenic pathways implicated in MCC pathogenesis. In situ hybridization confirmed that the highly expressed MCC-miR, miR-182, is localized within tumor cells. Furthermore, NGS and qRT-PCR reveal that several of these MCC-miRs are highly expressed in the patient-derived MCC cell line, MS-1. These data indicate that we have identified a set of MCC-miRs with important implications for MCC research.
doi:10.1155/2014/289548
PMCID: PMC3929981  PMID: 24627810
8.  Novel Rare Variants in Congenital Cardiac Arrhythmia Genes are Frequent in Drug-induced Torsades de Pointes 
The pharmacogenomics journal  2012;13(4):325-329.
Marked prolongation of the QT interval and polymorphic ventricular tachycardia following medication (drug-induced long QT syndrome, diLQTS) is a severe adverse drug reaction (ADR) that phenocopies congenital long QT syndrome (cLQTS) and one of the leading causes for drug withdrawal and relabeling. We evaluated the frequency of rare non-synonymous variants in genes contributing to the maintenance of heart rhythm in cases of diLQTS using targeted capture coupled to next generation sequencing. Eleven of 31 diLQTS subjects (36%) carried a novel missense mutation in genes with known congenital arrhythmia associations or a known cLQTS mutation. In the 26 Caucasian subjects, 23% carried a highly conserved rare variant predicted to be deleterious to protein function in these genes compared with only 2-4% in public databases (p < 0.003). We conclude that rare variation in genes responsible for congenital arrhythmia syndromes is frequent in diLQTS. Our findings demonstrate that diLQTS is a pharmacogenomic syndrome predisposed by rare genetic variants.
doi:10.1038/tpj.2012.14
PMCID: PMC3422407  PMID: 22584458
pharmacogenomics; sudden cardiac death; adverse drug reaction; next generation sequencing
9.  Differential Gene Expression Landscape of Co-Existing Cervical Pre-Cancer Lesions Using RNA-seq 
Frontiers in Oncology  2014;4:339.
Genetic changes occurring in different stages of pre-cancer lesions reflect causal events initiating and promoting the progression to cancer. Co-existing pre-cancerous lesions including low- and high-grade squamous intraepithelial lesion (LGSIL and HGSIL), and adjacent “normal” cervical epithelium from six formalin-fixed paraffin-embedded samples were selected. Tissues from these 18 samples were isolated using laser-capture microdissection, RNA was extracted and sequenced. RNA-sequencing generated 2.4 billion raw reads in 18 samples, of which ~50.1% mapped to known and annotated genes in the human genome. There were 40 genes up-regulated and 3 down-regulated (normal to LGSIL) in at least one-third of the sample pairs (same direction and FDR p < 0.05) including S100A7 and KLK6. Previous studies have shown that S110A7 and KLK7 are up-regulated in several other cancers, whereas CCL18, CFTR, and SLC6A14, also differentially expressed in two samples, are up-regulated specifically in cervical cancer. These differentially expressed genes in normal to LGSIL progression were enriched in pathways related to epithelial cell differentiation, keratinocyte differentiation, peptidase, and extracellular activities. In progression from LGSIL to HGSIL, two genes were up-regulated and five down-regulated in at least two samples. Further investigations using co-existing samples, which account for all internal confounders, will provide insights to better understand progression of cervical pre-cancer.
doi:10.3389/fonc.2014.00339
PMCID: PMC4244708  PMID: 25505737
RNA-sequencing; gene expression; cervical dysplasia; co-existing lesions; human genome
10.  Increased Protein-Coding Mutations in the Mitochondrial Genome of African American Women With Preeclampsia 
Reproductive Sciences  2012;19(12):1343-1351.
Preeclampsia occurs more frequently in women of African ancestry. The cause of this hypertensive complication is unclear, but placental oxidative stress may play a role. Because mitochondria are the major sites of oxidative phosphorylation, we hypothesized that placentas of preeclamptic pregnancies harbor mitochondrial DNA (mtDNA) mutations. Next-generation sequencing of placental mtDNA in African American preeclamptics (N = 30) and controls (N = 38) from Chicago revealed significant excesses in preeclamptics of nonsynonymous substitutions in protein-coding genes and mitochondrially encoded nicotinamide adenine dinucleotide dehydrogenase 5 gene and an increase in the substitution rate (P = .0001). Moreover, 88% of preeclamptics and 53% of controls carried at least one nonsynonymous substitution (P = .005; odds ratio [OR] = 6.36, 95% confidence interval [CI]: 1.5-39.1). These results were not replicated in a sample of African American preeclamptics (N = 162) and controls (N = 171) from Detroit. Differences in study design and heterogeneity may account for this lack of replication. Nonsynonymous substitutions in mtDNA may be risk factors for preeclampsia in some African American women, but additional studies are required to establish this relationship.
doi:10.1177/1933719112450337
PMCID: PMC4046444  PMID: 22902742
preeclampsia; mtDNA; African American women; oxidative phosphorylation
11.  ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption  
The Journal of Clinical Investigation  2013;123(12):5179-5189.
Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis. Mutations in ADCK4 resulted in reduced CoQ10 levels and reduced mitochondrial respiratory enzyme activity in cells isolated from individuals with SRNS and transformed lymphoblasts. Knockdown of adck4 in zebrafish and Drosophila recapitulated nephrotic syndrome-associated phenotypes. Furthermore, ADCK4 was expressed in glomerular podocytes and partially localized to podocyte mitochondria and foot processes in rat kidneys and cultured human podocytes. In human podocytes, ADCK4 interacted with members of the CoQ10 biosynthesis pathway, including COQ6, which has been linked with SRNS and COQ7. Knockdown of ADCK4 in podocytes resulted in decreased migration, which was reversed by CoQ10 addition. Interestingly, a patient with SRNS with a homozygous ADCK4 frameshift mutation had partial remission following CoQ10 treatment. These data indicate that individuals with SRNS with mutations in ADCK4 or other genes that participate in CoQ10 biosynthesis may be treatable with CoQ10.
doi:10.1172/JCI69000
PMCID: PMC3859425  PMID: 24270420
12.  RAF265 Inhibits the Growth of Advanced Human Melanoma Tumors 
Purpose
The purpose of this preclinical study was to determine the effectiveness of RAF265, a multi-kinase inhibitor, for treatment of human metastatic melanoma and to characterize traits associated with drug response.
Experimental Design
Advanced metastatic melanoma tumors from 34 patients were orthotopically implanted to nude mice. Tumors that grew in mice (17 of 34) were evaluated for response to RAF265 (40 mg/kg, every day) over 30 days. The relation between patient characteristics, gene mutation profile, global gene expression profile, and RAF265 effects on tumor growth, mitogen-activated protein/extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) phosphorylation, proliferation, and apoptosis markers was evaluated.
Results
Nine of the 17 tumors that successfully implanted (53%) were mutant BRAF (BRAFV600E/K), whereas eight of 17 (47%) tumors were BRAF wild type (BRAFWT). Tumor implants from 7 of 17 patients (41%) responded to RAF265 treatment with more than 50% reduction in tumor growth. Five of the 7 (71%) responders were BRAFWT, of which 1 carried c-KITL576P and another N-RASQ61R mutation, while only 2 (29%) of the responding tumors were BRAFV600E/K. Gene expression microarray data from nonimplanted tumors revealed that responders exhibited enriched expression of genes involved in cell growth, proliferation, development, cell signaling, gene expression, and cancer pathways. Although response to RAF265 did not correlate with pERK1/2 reduction, RAF265 responders did exhibit reduced pMEK1, reduced proliferation based upon reduced Ki-67, cyclin D1 and polo-like kinase1 levels, and induction of the apoptosis mediator BCL2-like 11.
Conclusions
Orthotopic implants of patient tumors in mice may predict prognosis and treatment response for melanoma patients. A subpopulation of human melanoma tumors responds to RAF265 and can be characterized by gene mutation and gene expression profiles.
doi:10.1158/1078-0432.CCR-11-1122
PMCID: PMC3724517  PMID: 22351689
13.  ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling  
The Journal of Clinical Investigation  2013;123(8):3243-3253.
Nephrotic syndrome (NS) is divided into steroid-sensitive (SSNS) and -resistant (SRNS) variants. SRNS causes end-stage kidney disease, which cannot be cured. While the disease mechanisms of NS are not well understood, genetic mapping studies suggest a multitude of unknown single-gene causes. We combined homozygosity mapping with whole-exome resequencing and identified an ARHGDIA mutation that causes SRNS. We demonstrated that ARHGDIA is in a complex with RHO GTPases and is prominently expressed in podocytes of rat glomeruli. ARHGDIA mutations (R120X and G173V) from individuals with SRNS abrogated interaction with RHO GTPases and increased active GTP-bound RAC1 and CDC42, but not RHOA, indicating that RAC1 and CDC42 are more relevant to the pathogenesis of this SRNS variant than RHOA. Moreover, the mutations enhanced migration of cultured human podocytes; however, enhanced migration was reversed by treatment with RAC1 inhibitors. The nephrotic phenotype was recapitulated in arhgdia-deficient zebrafish. RAC1 inhibitors were partially effective in ameliorating arhgdia-associated defects. These findings identify a single-gene cause of NS and reveal that RHO GTPase signaling is a pathogenic mediator of SRNS.
doi:10.1172/JCI69134
PMCID: PMC3726174  PMID: 23867502
14.  Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq 
Cigarette smoke creates a molecular field of injury in epithelial cells that line the respiratory tract. We hypothesized that transcriptome sequencing (RNA-Seq) will enhance our understanding of the field of molecular injury in response to tobacco smoke exposure and lung cancer pathogenesis by identifying gene expression differences not interrogated or accurately measured by microarrays. We sequenced the high-molecular-weight fraction of total RNA (>200 nt) from pooled bronchial airway epithelial cell brushings (n = 3 patients per pool) obtained during bronchoscopy from healthy never smoker (NS) and current smoker (S) volunteers and smokers with (C) and without (NC) lung cancer undergoing lung nodule resection surgery. RNA-Seq libraries were prepared using 2 distinct approaches, one capable of capturing non-polyadenylated RNA (the prototype NuGEN Ovation RNA-Seq protocol) and the other designed to measure only polyadenylated RNA (the standard Illumina mRNA-Seq protocol) followed by sequencing generating approximately 29 million 36 nt reads per pool and approximately 22 million 75 nt paired-end reads per pool, respectively. The NuGEN protocol captured additional transcripts not detected by the Illumina protocol at the expense of reduced coverage of polyadenylated transcripts, while longer read lengths and a paired-end sequencing strategy significantly improved the number of reads that could be aligned to the genome. The aligned reads derived from the two complementary protocols were used to define the compendium of genes expressed in the airway epithelium (n = 20,573 genes). Pathways related to the metabolism of xenobiotics by cytochrome P450, retinol metabolism, and oxidoreductase activity were enriched among genes differentially expressed in smokers, whereas chemokine signaling pathways, cytokine–cytokine receptor interactions, and cell adhesion molecules were enriched among genes differentially expressed in smokers with lung cancer. There was a significant correlation between the RNA-Seq gene expression data and Affymetrix microarray data generated from the same samples (P < 0.001); however, the RNA-Seq data detected additional smoking- and cancer-related transcripts whose expression was were either not interrogated by or was not found to be significantly altered when using microarrays, including smoking-related changes in the inflammatory genes S100A8 and S100A9 and cancer-related changes in MUC5AC and secretoglobin (SCGB3A1). Quantitative real-time PCR confirmed differential expression of select genes and non-coding RNAs within individual samples. These results demonstrate that transcriptome sequencing has the potential to provide new insights into the biology of the airway field of injury associated with smoking and lung cancer. The measurement of both coding and non-coding transcripts by RNA-Seq has the potential to help elucidate mechanisms of response to tobacco smoke and to identify additional biomarkers of lung cancer risk and novel targets for chemoprevention.
doi:10.1158/1940-6207.CAPR-11-0212
PMCID: PMC3694393  PMID: 21636547
15.  The genetic landscape of mutations in Burkitt lymphoma 
Nature genetics  2012;44(12):1321-1325.
Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.
doi:10.1038/ng.2468
PMCID: PMC3674561  PMID: 23143597
16.  De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia 
Nature genetics  2012;44(12):1365-1369.
To evaluate evidence for de novo etiologies in schizophrenia, we sequenced at high coverage the exomes of families recruited from two populations with distinct demographic structure and history. We sequenced a total of 795 exomes from 231 parent-proband trios enriched for sporadic schizophrenia cases, as well as 34 unaffected trios. We observed in cases an excess of non-synonymous single nucleotide variants as well as a higher prevalence of gene-disruptive de novo mutations. We found four genes (LAMA2, DPYD, TRRAP and VPS39) affected by recurrent de novo events within or across the two populations, a finding unlikely to have occurred by chance. We show that de novo mutations affect genes with diverse functions and developmental profiles but we also find a substantial contribution of mutations in genes with higher expression in early fetal life. Our results help define the pattern of genomic and neural architecture of schizophrenia.
doi:10.1038/ng.2446
PMCID: PMC3556813  PMID: 23042115
17.  The use of Next Generation Sequencing Technology to Study the Effect of Radiation Therapy on Mitochondrial DNA Mutation 
Mutation Research  2012;744(2):154-160.
The human mitochondrial genome has an exclusively maternal mode of inheritance. Mitochondrial DNA (mtDNA) is particularly vulnerable to environmental insults due in part to an underdeveloped DNA repair system, limited to base excision and homologous recombination repair. Radiation exposure to the ovaries may cause mtDNA mutations in oocytes, which may in turn be transmitted to offspring. We hypothesized that the children of female cancer survivors who received radiation therapy may have an increased rate of mtDNA heteroplasmy mutations, which conceivably could increase their risk of developing cancer and other diseases. We evaluated 44 DNA blood samples from 17 Danish and 1 Finnish families (18 mothers and 26 children). All mothers had been treated for cancer as children and radiation doses to their ovaries were determined based on medical records and computational models. DNA samples were sequenced for the entire mitochondrial genome using the Illumina GAII system. Mother’s age at sample collection was positively correlated with mtDNA heteroplasmy mutations. There was evidence of heteroplasmy inheritance in that 9 of the 18 families had at least one child who inherited at least one heteroplasmy site from his or her mother. No significant difference in single nucleotide polymorphisms between mother and offspring, however, was observed. Radiation therapy dose to ovaries also was not significantly associated with the heteroplasmy mutation rate among mothers and children. No evidence was found that radiotherapy for pediatric cancer is associated with the mitochondrial genome mutation rate in female cancer survivors and their children.
doi:10.1016/j.mrgentox.2012.02.006
PMCID: PMC3354959  PMID: 22387842
18.  [No title available] 
Functional genome annotation is important for studies of dynamic genetic architectures, revealing critical developmental pathways, and facilitating understanding of disease and evolution. Characterization of the transcriptome has revealed many active genes with spatio-temporal regulation and evolutionary significance. However, expression studies have often been limited to gene or exon-based microarrays, EST sequencing, or small amounts of cDNA sequencing on next generation sequencing (NGS) platforms. These studies have often been limited by technology, depth of sequencing, and a lack of sufficient controls for comparison. Very few RNA sequencing standards or expected measures exist to help in the quantification of gene or splice form expression.
We present the results of an ongoing large-scale ABRF study of RNA-Seq. The goals of this ABRF-NGS study are to evaluate the performance of NGS platforms and to identify optimal methods and best practices. The study includes five ABRF Research Groups and over 20 core facility laboratories. To assess the detection of expression-based molecular signatures using RNA-Seq and to study the sources of possible site-to-site variance in results, we performed sequencing on five NGS platforms using standardized RNA samples with synthetic RNA spike-ins. The platforms included Illumina (HiSeq 2000/2500 and MiSeq), Roche 454 GS FLX, Life Technologies (Ion PGM and Proton), and PacBio.
We observed high correlation of RNA-Seq results within sites, but “site effect” was the largest variance factor outside of biological sources. Additionally, we observed that the “bioinformatics noise” of aligners and annotations contributed substantial variance, underscoring the need for data provenance for long-term studies. As part of this study, we are evaluating many of the popular current RNA and DNA sequence alignment tools and accessing how they deal with issues such as multiple splicing events, multiple type and number of variants, read length, and providing efficient computational analysis time.
PMCID: PMC3635336
19.  Patterns and rates of exonic de novo mutations in autism spectrum disorders 
Nature  2012;485(7397):242-245.
Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors.
doi:10.1038/nature11011
PMCID: PMC3613847  PMID: 22495311
20.  Exome Analysis of a Family with Pleiotropic Congenital Heart Disease 
Background
A number of single gene defects have been identified in patients with isolated or nonsyndromic congenital heart defects (CHD). However, due to significant genetic heterogeneity candidate gene approaches have had limited success in finding high-risk alleles in most cases.
Objective
Use exome sequencing to identify high-risk gene variants in a family with highly penetrant pleiotropic CHD.
Methods
DNA samples from 2 members of a family with diverse CHD were analyzed by exome sequencing. Variants were filtered to eliminate common variants and sequencing artifacts and then prioritized based upon the predicted effect of the variant and on gene function. The remainder of the family was screened using PCR, high resolution melting analysis and DNA sequencing to evaluate variant segregation.
Results
After filtering, more than 2000 rare variants (including single nucleotide substitutions and indels) were shared by the 2 individuals. Of these, 46 were non-synonymous, 3 were predicted to alter splicing, and 6 resulted in a frameshift. Prioritization reduced the number of variants potentially involved in CHD to 18. None of the variants completely segregated with CHD in the kindred. However, one variant, Myh6 Ala290Pro, was identified in all but one affected individual. This variant was previously identified in a patient with tricuspid atresia and large secundum ASD.
Conclusions
It is likely that next generation sequencing will become the method of choice for unraveling the complex genetics of CHD, but information gained by analysis of transmission through families will be crucial.
doi:10.1161/CIRCGENETICS.111.961797
PMCID: PMC3329568  PMID: 22337856
Atrial Septal Defects; Exome Sequencing; Myosin Heavy Chain 6; Mutations
21.  The pan-ErbB negative regulator, Lrig1, is an intestinal stem cell marker that functions as a tumor suppressor 
Cell  2012;149(1):146-158.
SUMMARY
Lineage mapping has identified both proliferative and quiescent intestinal stem cells, but the molecular circuitry controlling stem cell quiescence is incompletely understood. By lineage mapping, we show Lrig1, a pan-ErbB inhibitor, marks predominately non-cycling, long-lived stem cells located at the crypt base that, upon injury, proliferate and divide to replenish damaged crypts. Transcriptome profiling of Lrig1+ colonic stem cells differs markedly from highly proliferative, Lgr5+ colonic stem cells; genes up-regulated in the Lrig1+ population include those involved in cell cycle repression and response to oxidative damage. Loss of Apc in Lrig1+ cells leads to intestinal adenomas and genetic ablation of Lrig1 results in heightened ErbB1-3 expression and duodenal adenomas. These results shed light on the relationship between proliferative and quiescent intestinal stem cells, and support a model in which intestinal stem cell quiescence is maintained by calibrated ErbB signaling with loss of a negative regulator predisposing to neoplasia.
doi:10.1016/j.cell.2012.02.042
PMCID: PMC3563328  PMID: 22464327
22.  Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling 
Chaki, Moumita | Airik, Rannar | Ghosh, Amiya K. | Giles, Rachel H. | Chen, Rui | Slaats, Gisela G. | Wang, Hui | Hurd, Toby W. | Zhou, Weibin | Cluckey, Andrew | Gee, Heon-Yung | Ramaswami, Gokul | Hong, Chen-Jei | Hamilton, Bruce A. | Červenka, Igor | Ganji, Ranjani Sri | Bryja, Vitezslav | Arts, Heleen H. | van Reeuwijk, Jeroen | Oud, Machteld M. | Letteboer, Stef J.F. | Roepman, Ronald | Husson, Hervé | Ibraghimov-Beskrovnaya, Oxana | Ysunaga, Takayuki | Walz, Gerd | Eley, Lorraine | Sayer, John A. | Schermer, Bernhard | Liebau, Max C. | Benzing, Thomas | Le Corre, Stephanie | Drummond, Iain | Joles, Jaap A. | Janssen, Sabine | Allen, Susan J. | Natarajan, Sivakumar | O Toole, John F. | Attanasio, Massimo | Saunier, Sophie | Antignac, Corinne | Koenekoop, Robert K. | Ren, Huanan | Lopez, Irma | Nayir, Ahmet | Stoetzel, Corinne | Dollfus, Helene | Massoudi, Rustin | Gleeson, Joseph G. | Andreoli, Sharon P. | Doherty, Dan G. | Lindstrad, Anna | Golzio, Christelle | Katsanis, Nicholas | Pape, Lars | Abboud, Emad B. | Al-Rajhi, Ali A. | Lewis, Richard A. | Lupski, James R. | Omran, Heymut | Lee, Eva | Wang, Shaohui | Sekiguchi, JoAnn M. | Saunders, Rudel | Johnson, Colin A. | Garner, Elizabeth | Vanselow, Katja | Andersen, Jens S. | Shlomai, Joseph | Nurnberg, Gudrun | Nurnberg, Peter | Levy, Shawn | Smogorzewska, Agata | Otto, Edgar A. | Hildebrandt, Friedhelm
Cell  2012;150(3):533-548.
SUMMARY
Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as ‘ciliopathies’. However, disease mechanisms remain poorly understood. Here we identify by whole exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway, hitherto not implicated in ciliopathies. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164 and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents, and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. We identify TTBK2, CCDC92, NPHP3 and DVL3 as novel CEP164 interaction partners. Our findings link degenerative diseases of kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.
doi:10.1016/j.cell.2012.06.028
PMCID: PMC3433835  PMID: 22863007
23.  FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair 
Nature genetics  2012;44(8):910-915.
SUMMARY
Chronic kidney disease (CKD) represents a major health burden1. Its central feature of renal fibrosis is not well understood. By whole exome resequencing in a model disorder for renal fibrosis, nephronophthisis (NPHP), we identified mutations of Fanconi anemia-associated nuclease 1 (FAN1) as causing karyomegalic interstitial nephritis (KIN). Renal histology of KIN is indistinguishable from NPHP except for the presence of karyomegaly2. FAN1 has nuclease activity, acting in DNA interstrand crosslinking (ICL) repair within the Fanconi anemia pathway of DNA damage response (DDR)3–6. We demonstrate that cells from individuals with FAN1 mutations exhibit sensitivity to the ICL agent mitomycin C. However, they do not exhibit chromosome breakage or cell cycle arrest after diepoxybutane treatment, unlike cells from patients with Fanconi anemia. We complement ICL sensitivity with wild type FAN1 but not mutant cDNA from individuals with KIN. Depletion of fan1 in zebrafish revealed increased DDR, apoptosis, and kidney cysts akin to NPHP. Our findings implicate susceptibility to environmental genotoxins and inadequate DNA repair as novel mechanisms of renal fibrosis and CKD.
doi:10.1038/ng.2347
PMCID: PMC3412140  PMID: 22772369
24.  Genome-wide association study identifies breast cancer risk variant at 10q21.2: results from the Asia Breast Cancer Consortium 
Human Molecular Genetics  2011;20(24):4991-4999.
Although approximately 20 common genetic susceptibility loci have been identified for breast cancer risk through genome-wide association studies (GWASs), genetic risk variants reported to date explain only a small fraction of heritability for this common cancer. We conducted a four-stage GWAS including 17 153 cases and 16 943 controls among East-Asian women to search for new genetic risk factors for breast cancer. After analyzing 684 457 SNPs in 2062 cases and 2066 controls (Stage I), we selected for replication among 5969 Chinese women (4146 cases and 1823 controls) the top 49 SNPs that had neither been reported previously nor were in strong linkage disequilibrium with reported SNPs (Stage II). Three SNPs were further evaluated in up to 13 152 Chinese and Japanese women (6436 cases and 6716 controls) (Stage III). Finally, two SNPs were evaluated in 10 847 Korean women (4509 cases and 6338 controls) (Stage IV). SNP rs10822013 on chromosome 10q21.2, located in the zinc finger protein 365 (ZNF365) gene, showed a consistent association with breast cancer risk in all four stages with a combined per-risk allele odds ratio of 1.10 (95% CI: 1.07–1.14) (P-value for trend = 5.87 × 10−9). In vitro electrophoretic mobility shift assays demonstrated the potential functional significance of rs10822013. Our results strongly implicate rs10822013 at 10q21.2 as a genetic risk variant for breast cancer among East-Asian women.
doi:10.1093/hmg/ddr405
PMCID: PMC3221542  PMID: 21908515
25.  Mutations in the colony stimulating factor 1 receptor (CSF1R) cause hereditary diffuse leukoencephalopathy with spheroids 
Nature Genetics  2011;44(2):200-205.
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal dominantly inherited central nervous system white matter disease with variable clinical presentations including personality and behavioral changes, dementia, depression, parkinsonism, seizures, and others1,2. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor receptor 1 (encoded by CSF1R) in 14 families affected by HDLS. In one kindred, the de novo occurrence of the mutation was confirmed. Follow-up sequencing analyses identified an additional CSF1R mutation in a patient clinically diagnosed with corticobasal syndrome (CBS). In vitro, CSF-1 stimulation resulted in the rapid autophosphorylation of selected tyrosine-residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from a partial loss of CSF1R function. Since CSF1R is a critical mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.
doi:10.1038/ng.1027
PMCID: PMC3267847  PMID: 22197934

Results 1-25 (57)