Search tips
Search criteria

Results 1-25 (138)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice 
Synthetic a-Synuclein fibrils injected into the brain spread far beyond the injection site and are sufficient to accelerate Parkinson’s disease–like pathology in mice.
The accumulation of misfolded proteins is a fundamental pathogenic process in neurodegenerative diseases. However, the factors that trigger aggregation of α-Synuclein (α-Syn), the principal component of the intraneuronal inclusions known as Lewy bodies (LBs), and Lewy neurites (LNs), which characterize Parkinson’s disease (PD) and dementia with LBs (DLB), are poorly understood. We show here that in young asymptomatic α-Syn transgenic (Tg) mice, intracerebral injections of brain homogenates derived from older Tg mice exhibiting α-Syn pathology accelerate both the formation of intracellular LB/LN-like inclusions and the onset of neurological symptoms in recipient animals. Pathological α-Syn propagated along major central nervous system (CNS) pathways to regions far beyond injection sites and reduced survival with a highly reproducible interval from injection to death in inoculated animals. Importantly, inoculation with α-Syn amyloid fibrils assembled from recombinant human α-Syn induced identical consequences. Furthermore, we show for the first time that synthetic α-Syn fibrils are wholly sufficient to initiate PD-like LBs/LNs and to transmit disease in vivo. Thus, our data point to a prion-like cascade in synucleinopathies whereby cell–cell transmission and propagation of misfolded α-Syn underlie the CNS spread of LBs/LNs. These findings open up new avenues for understanding the progression of PD and for developing novel therapeutics.
PMCID: PMC3348112  PMID: 22508839
2.  Multiple Proteins Implicated in Neurodegenerative Diseases Accumulate in Axons After Brain Trauma in Humans 
Experimental neurology  2007;208(2):185-192.
Studies in animal models have shown that traumatic brain injury (TBI) induces the rapid accumulation of many of the same key proteins that form pathologic aggregates in neurodegenerative diseases. Here, we examined whether this rapid process also occurs in humans after TBI. Brain tissue from 18 cases who died after TBI and from 6 control cases was examined using immunohistochemistry. Following TBI, widespread axonal injury was persistently identified by the accumulation of neurofilament protein and amyloid precursor protein (APP) in axonal bulbs and varicosities. Axonal APP was found to co-accumulate with its cleavage enzymes, beta-site APP cleaving enzyme (BACE), presenilin-1 (PS1) and their product, amyloid-β (Aβ). In addition, extensive accumulation of α-synuclein (α-syn) was found in swollen axons and tau protein was found to accumulate in both axons and neuronal cell bodies. These data show rapid axonal accumulation of proteins implicated in neurodegenerative diseases including Alzheimer’s disease and the synucleinopathies. The cause of axonal pathology can be attributed to disruption of axons due to trauma, or as a secondary effect of raised intracranial pressure or hypoxia. Such axonal pathology in humans may provide a unique environment whereby co-accumulation of APP, BACE, and PS1 leads to intra-axonal production of Aβ as well as accumulation of α-syn and tau. This process may have important implications for survivors of TBI who have been shown to be at greater risk of developing neurodegenerative diseases.
PMCID: PMC3979356  PMID: 17826768
Traumatic brain injury; TBI; axonal injury; amyloid β; APP; BACE; PS-1; α-synuclein; tau
3.  Neurofibrillary Tangle-Like Tau Pathology Induced by Synthetic Tau Fibrils in Primary Neurons Over-expressing Mutant Tau 
FEBS letters  2013;587(6):717-723.
Increasing evidence demonstrates the transmissibility of fibrillar species of tau protein, but this has never been directly tested in neurons, the cell type most affected by formation of tau inclusions in neurodegenerative tauopathies. Here we show that synthetic tau fibrils made from recombinant protein not only time-dependently recruit normal tau into neurofibrillary tangle-like insoluble aggregates in primary hippocampal neurons over-expressing human tau, but also induce neuritic tau pathology in non-transgenic neurons. This study provides highly compelling support for the protein-only hypothesis of pathological tau transmission in primary neurons and describes a useful neuronal model for studying the pathogenesis of tauopathies.
PMCID: PMC3678381  PMID: 23395797
Tau; Protein Aggregation; Tauopathy; Transmission
4.  Characterization of tau fibrillization in vitro 
The assembly of tau proteins into paired helical filaments, the building blocks of neurofibrillary tangles, is linked to neurodegeneration in Alzheimer’s disease and related tauopathies. A greater understanding of this assembly process could identify targets for the discovery of drugs to treat Alzheimer’s disease and related disorders. Using recombinant human tau, we have delineated events leading to the conversion of normal soluble tau into tau fibrils
Atomic force microscopy and transmission electron microscopy methodologies were utilized to determine the structure of tau assemblies that formed when soluble tau was incubated with heparin for increasing lengths of time.
Tau initially oligomerizes into spherical nucleation units of 18–21 nm diameter that appear to assemble linearly into nascent fibrils. Among the earliest tau fibrils are species that resemble a string of beads formed by linearly aligned spheres that with time seem to coalesce to form straight and twisted ribbon-like filaments, as well as paired-helical filaments similar to those found in human tauopathies. An analysis of fibril cross-sections at later incubation times revealed three fundamental axial structural features.
By monitoring tau fibrillization, we show that different tau filament morphologies co-exist. Temporal changes in the predominant tau structural species suggest that tau fibrillization involves the generation of structural intermediates, resulting in the formation of tau fibrils with verisimilitude to their authentic human counterparts.
PMCID: PMC2842604  PMID: 20298971
Alzheimer’s disease; tauopathy; amyloid; tangles; neurodegeneration
5.  Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice 
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are characterized by cytoplasmic protein aggregates in the brain and spinal cord that include TAR-DNA binding protein 43 (TDP-43). TDP-43 is normally localized in the nucleus with roles in the regulation of gene expression, and pathological cytoplasmic aggregates are associated with depletion of nuclear protein. Here, we generated transgenic mice expressing human TDP-43 with a defective nuclear localization signal in the forebrain (hTDP-43-ΔNLS), and compared them with mice expressing WT hTDP-43 (hTDP-43-WT) to determine the effects of mislocalized cytoplasmic TDP-43 on neuronal viability. Expression of either hTDP-43-ΔNLS or hTDP-43-WT led to neuron loss in selectively vulnerable forebrain regions, corticospinal tract degeneration, and motor spasticity recapitulating key aspects of FTLD and primary lateral sclerosis. Only rare cytoplasmic phosphorylated and ubiquitinated TDP-43 inclusions were seen in hTDP-43-ΔNLS mice, suggesting that cytoplasmic inclusions were not required to induce neuronal death. Instead, neurodegeneration in hTDP-43 and hTDP-43-ΔNLS–expressing neurons was accompanied by a dramatic downregulation of the endogenous mouse TDP-43. Moreover, mice expressing hTDP-43-ΔNLS exhibited profound changes in gene expression in cortical neurons. Our data suggest that perturbation of endogenous nuclear TDP-43 results in loss of normal TDP-43 function(s) and gene regulatory pathways, culminating in degeneration of selectively vulnerable affected neurons.
PMCID: PMC3026736  PMID: 21206091
6.  Forebrain Overexpression of Alpha-Synuclein Leads to Early Postnatal Hippocampal Neuron Loss and Synaptic Disruption 
Experimental neurology  2009;221(1):86-97.
Transgenic (Tg) mouse models of Parkinson’s disease (PD) generated to date have primarily been designed to overexpress human alpha-synuclein (α–syn) to recapitulate PD-like motor impairments as well as PD-like nigro-striatal degeneration and α–syn pathology. However, cognitive impairments and cortical α–syn pathology also are common in PD patients. To model these features of PD, we created forebrain-specific conditional Tg mice that overexpress human wild type (WT) or A53T mutant α–syn. Here we show that both WT and A53T mutant α–syn lead to massive degeneration of postmitotic neurons in the hippocampal dentate gyrus (DG) during postnatal development, with hippocampal synapse loss as evidenced by reduced levels of pre- and postsynaptic markers. However, when mutant and WT α–syn expression was repressed until the Tg mice were mature postnatally and then induced for several months, no hippocampal neuron loss was observed. These data imply that developing neurons are more vulnerable to degenerate than mature neurons as a consequence of forebrain WT and mutant α–syn overexpression.
PMCID: PMC2812632  PMID: 19833127
α -synuclein; Parkinson’s disease; conditional transgenic mouse; hippocampus; dentate gyrus; postnatal development
7.  Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau 
Journal of neurochemistry  2009;110(4):1339-1351.
Tau is a microtubule-associated protein that promotes microtubule assembly and stability. In Alzheimer's disease and related tauopathies, tau fibrillizes and aggregates into neurofibrillary tangles. Recently, oleocanthal isolated from extra virgin olive oil was found to display non-steroidal anti-inflammatory activity similar to ibuprofen. Since our unpublished data indicates an inhibitory effect of oleocanthal on Aβ fibrillization, we reasoned that it might inhibit tau fibrillization as well. Herein we demonstrate that oleocanthal abrogates fibrillization of tau by locking tau into the naturally unfolded state. Using PHF6 consisting of the amino acid residues VQIVYK, a hexapeptide within the third repeat of tau that is essential for fibrillization, we show that oleocanthal forms an adduct with the lysine via initial Schiff base formation. Structure and function studies demonstrate that the two aldehyde groups of oleocanthal are required for the inhibitory activity. These two aldehyde groups show certain specificity when titrated with free lysine and oleocanthal does not significantly affect the normal function of tau. These findings provide a potential scheme for the development of novel therapies for neurodegenerative tauopathies.
PMCID: PMC2758489  PMID: 19549281
tau; fibrillization; neurodegeneration; oleocanthal; aldehyde; lysine
8.  Therapeutic strategies for tau mediated neurodegeneration 
Based on the amyloid hypothesis, controlling β-amyloid protein (Aβ) accumulation is supposed to suppress downstream pathological events, tau accumulation, neurodegeneration and cognitive decline. However, in recent clinical trials, Aβ removal or reducing Aβ production has shown limited efficacy. Moreover, while active immunisation with Aβ resulted in the clearance of Aβ, it did not prevent tau pathology or neurodegeneration. This prompts the concern that it might be too late to employ Aβ targeting therapies once tau mediated neurodegeneration has occurred. Therefore, it is timely and very important to develop tau directed therapies. The pathomechanisms of tau mediated neurodegeneration are unclear but hyperphosphorylation, oligomerisation, fibrillisation and propagation of tau pathology have been proposed as the likely pathological processes that induce loss of function or gain of toxic function of tau, causing neurodegeneration. Here we review the strategies for tau directed treatments based on recent progress in research on tau and our understanding of the pathomechanisms of tau mediated neurodegeneration.
PMCID: PMC3912572  PMID: 23085937
9.  Evidence That Non-Fibrillar Tau Causes Pathology Linked To Neurodegeneration And Behavioral Impairments 
The discovery that mutations within the tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) provided direct evidence that tau alterations can lead to neurodegenerative disease. While the presence of tau fibrils and tangles is a common feature of all tauopathies, including Alzheimer’s disease (AD), data are emerging from biochemical, cell-based and transgenic mouse studies which suggest that a pre-fibrillar form of pathological tau may play a key role in eliciting central nervous system (CNS) neurodegeneration and behavioral impairments. Herein we review recent findings that implicate diffusible tau pathology in the onset of neurodegeneration, and discuss the implications of these findings as they relate to tau tangles and possible therapeutic strategies for the treatment of AD and related tauopathies.
PMCID: PMC2789426  PMID: 18688089
Fibrils; Neurodegeneration; Oligomers; Tangles; Tau; Transgenic
Biochemistry  2008;47(47):12614-12625.
Molecular chaperones of the heat shock protein 70 (Hsp70) family counteract protein misfolding in a variety of neurodegenerative disease models. To determine whether human Hsp70 exerts similar effects on the aggregation of alpha-synuclein (α-Syn), the key component of insoluble fibrils present in Parkinson’s disease, we investigated α-Syn fibril assembly in the presence of Hsp70. We found in vitro assembly was efficiently inhibited by substoichiometric concentrations of purified Hsp70 in the absence of co-factors. Experiments using α-Syn deletion mutants indicated that interactions between the Hsp70 substrate binding domain and the α-Syn core hydrophobic region underlie assembly inhibition. This assembly process was inhibited prior to the elongation stage as we failed to detect any fibrils by electron microscopy. In addition, fluorescence polarization and binding assays suggest that Hsp70 recognizes soluble α-Syn species in a highly dynamic and reversible manner. Together, these results provide novel insights into how Hsp70 suppresses α-Syn aggregation. Furthermore, our findings suggest that this critical step in Parkinson’s disease pathogenesis may be subject to modulation by a common molecular chaperone.
PMCID: PMC2648307  PMID: 18975920
11.  TDP-43: A Novel Neurodegenerative Proteinopathy 
Current opinion in neurobiology  2007;17(5):548-555.
Over the past decade it has become clear that there is significant overlap in the clinical spectrum of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The identification of TDP-43 as the major disease protein in the pathology of both frontotemporal lobar degeneration with ubiquitin inclusions and amyotrophic lateral sclerosis provides the first molecular link for these diseases. Pathological TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved to generate carboxy-terminal fragments in affected brain regions. The normal nuclear expression of TDP-43 is also reduced leading to the hypothesis that sequestration of TDP-43 in pathological inclusions contributes to disease pathogenesis. Thus, TDP-43 is the newest member of the growing list of neurodegenerative proteinopathies, but unique in that it lacks features of brain amyloidosis.
PMCID: PMC2678676  PMID: 17936612
12.  TDP-43 skeins show properties of amyloid in a subset of ALS cases 
Acta neuropathologica  2012;125(1):121-131.
Aggregation of TDP-43 proteins to form intracellular inclusions is the primary pathology in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with TDP-43 inclusions (FTLD-TDP). Histologically, in the cerebral cortex and limbic regions of affected ALS and FTLD-TDP patients, these pathologies occur as a variety of cytoplasmic, neuritic and intranuclear TDP-43 inclusions. In the spinal cord and lower brainstem of ALS patients, the lesions form cytoplasmic dashes or complex filamentous and spherical profiles in addition to skein-like inclusions (SLI). Ultrastructurally, the morphology of TDP-43 inclusions is heterogeneous but mainly composed of loose bundles of 10–20 nm diameter straight filaments associated with electron dense granular material. All of these TDP-43 inclusions are generally described as disordered amorphous aggregations unlike the amyloid fibrils that characterize protein accumulations in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
We here report that Thioflavin-S positive SLI are present in a subset of ALS cases, while TDP-43 inclusions outside the spinal cord lack the chemical properties of amyloid. Further, we examine the differential enrichment of fibrillar profiles in SLI of ALS cases by TDP-43 immuno-electron microscopy (immuno-EM). The demonstration that pathological TDP-43 can be amyloidogenic in situ suggests the following conclusions: 1) the conformational changes associated with TDP-43 aggregation are more complex than previously thought; 2) Thioflavin-S positive SLI may be composed primarily of filamentous ultrastructures.
PMCID: PMC3536927  PMID: 23124365
TDP-43; amyloid; skein; amyotrophic lateral sclerosis; ALS; frontotemporal lobar degeneration; FTLD-TDP
13.  Vascular Disease and Dementias: Paradigm Shifts to Drive Research in New Directions 
Vascular disease was once considered the principal cause of aging-related dementia. More recently, however, research emphasis has shifted to studies of progressive neurodegenerative disease processes such as those giving rise to neuritic plaques, neurofibrillary tangles, and Lewy bodies. While these studies have led to critical insights and potential therapeutic strategies, interest in the role of systemic and cerebrovascular disease mechanisms waned and has received relatively less attention and research support. Recent studies suggest that vascular disease mechanisms play an important role in the risk for aging-related cognitive decline and disorders. Vascular disease frequently coexists with cognitive decline in aging individuals, shares many risk factors with dementias considered to be of the “Alzheimer-type,” and is observed more frequently than expected in postmortem material from individuals manifesting “specific” disease stigmata such as abundant plaques and tangles. Considerable difficulties have emerged in attempting to classify dementias as being related to vascular vs. neurodegenerative causes, and several systems of criteria have been used. Despite multiple attempts, a lack of consensus remains regarding the optimal means of incorporating vascular disease into clinical diagnostic, neurocognitive, or neuropathologic classification schemes for dementias.
We propose here an integrative, rather than a strictly taxonomic approach to the study and elucidation of how vascular disease mechanisms contribute to the development of dementias. We argue that, instead of discriminating between, e.g., “Alzheimer’s disease,” “vascular dementia,” and other diseases, there is a greater need to focus clinical and research efforts on elucidating specific pathophysiologic mechanisms that contribute to dementia phenotypes and neuropathologic outcomes. We outline a multi-tiered strategy, beginning with clinical and public health interventions that can be implemented immediately; enhancements to ongoing longitudinal studies to increase their informative value; and new initiatives to capitalize on recent advances in systems biology and network medicine. This strategy will require funding from multiple public and private sources to support collaborative and interdisciplinary research efforts in order to take full advantage of these opportunities and realize their societal benefits.
PMCID: PMC3640817  PMID: 23183137
14.  α-Synuclein–induced Aggregation of Cytoplasmic Vesicles in Saccharomyces cerevisiae 
Molecular Biology of the Cell  2008;19(3):1093-1103.
Aggregated α-synuclein (α-syn) fibrils form Lewy bodies (LBs), the signature lesions of Parkinson's disease (PD) and related synucleinopathies, but the pathogenesis and neurodegenerative effects of LBs remain enigmatic. Recent studies have shown that when overexpressed in Saccharomyces cerevisiae, α-syn localizes to plasma membranes and forms cytoplasmic accumulations similar to human α-syn inclusions. However, the exact nature, composition, temporal evolution, and underlying mechanisms of yeast α-syn accumulations and their relevance to human synucleinopathies are unknown. Here we provide ultrastructural evidence that α-syn accumulations are not comprised of LB-like fibrils, but are associated with clusters of vesicles. Live-cell imaging showed α-syn initially localized to the plasma membrane and subsequently formed accumulations in association with vesicles. Imaging of truncated and mutant forms of α-syn revealed the molecular determinants and vesicular trafficking pathways underlying this pathological process. Because vesicular clustering is also found in LB-containing neurons of PD brains, α-syn–mediated vesicular accumulation in yeast represents a model system to study specific aspects of neurodegeneration in PD and related synucleinopathies.
PMCID: PMC2262993  PMID: 18172022
15.  Calcium Entry and α-Synuclein Inclusions Elevate Dendritic Mitochondrial Oxidant Stress in Dopaminergic Neurons 
The Journal of Neuroscience  2013;33(24):10154-10164.
The core motor symptoms of Parkinson's disease (PD) are attributable to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed a major factor in PD pathogenesis. Previous work has shown that activity-dependent calcium entry through L-type channels elevates perinuclear mitochondrial oxidant stress in SNc dopaminergic neurons, providing a potential basis for their selective vulnerability. What is less clear is whether this physiological stress is present in dendrites and if Lewy bodies, the major neuropathological lesion found in PD brains, exacerbate it. To pursue these questions, mesencephalic dopaminergic neurons derived from C57BL/6 transgenic mice were studied in primary cultures, allowing for visualization of soma and dendrites simultaneously. Many of the key features of in vivo adult dopaminergic neurons were recapitulated in vitro. Activity-dependent calcium entry through L-type channels increased mitochondrial oxidant stress in dendrites. This stress progressively increased with distance from the soma. Examination of SNc dopaminergic neurons ex vivo in brain slices verified this pattern. Moreover, the formation of intracellular α-synuclein Lewy-body-like aggregates increased mitochondrial oxidant stress in perinuclear and dendritic compartments. This stress appeared to be extramitochondrial in origin, because scavengers of cytosolic reactive oxygen species or inhibition of NADPH oxidase attenuated it. These results show that physiological and proteostatic stress can be additive in the soma and dendrites of vulnerable dopaminergic neurons, providing new insight into the factors underlying PD pathogenesis.
PMCID: PMC3682382  PMID: 23761910
16.  BACE overexpression alters the subcellular processing of APP and inhibits Aβ deposition in vivo 
The Journal of Cell Biology  2005;168(2):291-302.
Introducing mutations within the amyloid precursor protein (APP) that affect β- and γ-secretase cleavages results in amyloid plaque formation in vivo. However, the relationship between β-amyloid deposition and the subcellular site of Aβ production is unknown. To determine the effect of increasing β-secretase (BACE) activity on Aβ deposition, we generated transgenic mice overexpressing human BACE. Although modest overexpression enhanced amyloid deposition, high BACE overexpression inhibited amyloid formation despite increased β-cleavage of APP. However, high BACE expression shifted the subcellular location of APP cleavage to the neuronal perikarya early in the secretory pathway. These results suggest that the production, clearance, and aggregation of Aβ peptides are highly dependent on the specific neuronal subcellular domain wherein Aβ is generated and highlight the importance of perikaryal versus axonal APP proteolysis in the development of Aβ amyloid pathology in Alzheimer's disease.
PMCID: PMC2171598  PMID: 15642747
17.  Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias 
Brain  2012;135(12):3749-3756.
A growing body of evidence demonstrates an association between vascular risk factors and Alzheimer’s disease. This study investigated the frequency and severity of atherosclerotic plaques in the circle of Willis in Alzheimer’s disease and multiple other neurodegenerative diseases. Semi-quantitative data from gross and microscopic neuropathological examinations in 1000 cases were analysed, including 410 with a primary diagnosis of Alzheimer’s disease, 230 with synucleinopathies, 157 with TDP-43 proteinopathies, 144 with tauopathies and 59 with normal ageing. More than 77% of subjects with Alzheimer’s disease had grossly apparent circle of Willis atherosclerosis, a percentage that was significantly higher than normal (47%), or other neurodegenerative diseases (43–67%). Age- and sex-adjusted atherosclerosis ratings were highly correlated with neuritic plaque, paired helical filaments tau neurofibrillary tangle and cerebral amyloid angiopathy ratings in the whole sample and within individual groups. We found no associations between atherosclerosis ratings and α-synuclein or TDP-43 lesion ratings. The association between age-adjusted circle of Willis atherosclerosis and Alzheimer’s disease–type pathology was more robust for female subjects than male subjects. These results provide further confirmation and specificity that vascular disease and Alzheimer’s disease are interrelated and suggest that common aetiologic or reciprocally synergistic pathophysiological mechanisms promote both vascular pathology and plaque and tangle pathology.
PMCID: PMC3577102  PMID: 23204143
atherosclerosis; neuritic plaques; neurofibrillary tangles; synuclein; TDP-43
18.  Degradative organelles containing mislocalized α- and β-synuclein proliferate in presenilin-1 null neurons 
The Journal of Cell Biology  2004;165(3):335-346.
Presenilin-1 null mutation (PS1 −/−) in mice is associated with morphological alterations and defects in cleavage of transmembrane proteins. Here, we demonstrate that PS1 deficiency also leads to the formation of degradative vacuoles and to the aberrant translocation of presynaptic α- and β-synuclein proteins to these organelles in the perikarya of primary neurons, concomitant with significant increases in the levels of both synucleins. Stimulation of autophagy in control neurons produced a similar mislocalization of synucleins as genetic ablation of PS1. These effects were not the result of the loss of PS1 γ-secretase activity; however, dysregulation of calcium channels in PS1 −/− cells may be involved. Finally, colocalization of α-synuclein and degradative organelles was observed in brains from patients with the Lewy body variant of AD. Thus, aberrant accumulation of α- and β-synuclein in degradative organelles are novel features of PS1 −/− neurons, and similar events may promote the formation of α-synuclein inclusions associated with neurodegenerative diseases.
PMCID: PMC2172178  PMID: 15123735
autophagy; calcium dysregulation; neurodegenerative diseases
19.  Brain-Penetrant Tetrahydronaphthalene Thromboxane A2-Prostanoid (TP) Receptor Antagonists as Prototype Therapeutics for Alzheimer’s Disease 
ACS Chemical Neuroscience  2012;3(11):928-940.
A hallmark pathological feature of the Alzheimer’s disease (AD) brain is the presence of senile plaques, which comprise amyloid β (Aβ) peptides that are derived from the amyloid precursor protein (APP). The plaque-containing AD brain is thought to be under oxidative stress, as evidenced by increased lipid oxidation products that include isoprostane-F2αIII (iPF2αIII). IPF2αIII can bind to and activate the thromboxane A2-prostanoid (TP) receptor, and TP receptor activation causes increased Aβ production through enhancement of APP mRNA stability. Moreover, TP receptor antagonists have been shown to block iPF2αIII-induced increases of Aβ secretion. Thus, the TP receptor may be a potential drug target for AD therapy. However, here we show that existing TP receptor antagonists have poor blood-brain barrier (BBB) permeability, likely due to the presence of a carboxylic acid moiety that is believed to be important for receptor interaction, but which may hamper passive diffusion across the BBB. We now report selected analogues of a known tetrahydronaphthalene TP receptor antagonist, wherein the carboxylic acid moiety has been replaced by heterocyclic bioisosteres. These heterocyclic analogues retained relatively high affinity for the mouse and human TP receptors, and, unlike the parent carboxylic acid compound, several examples freely diffused across the BBB into the brain upon administration to mice. These results reveal that brain-penetrant tetrahydronaphthalene TP receptor antagonists can be developed by substituting the carboxylic acid moiety with a suitable nonacidic bioisostere. Compounds of this type hold promise as potential lead structures to develop drug candidates for the treatment of AD.
PMCID: PMC3503350  PMID: 23173073
Alzheimer’s disease; amyloid precursor protein; antagonist; blood-brain barrier; plaques; thromboxane receptor
20.  The microtubule-associated tau protein has intrinsic acetyltransferase activity 
Nature structural & molecular biology  2013;20(6):10.1038/nsmb.2555.
Tau proteins are the building blocks of neurofibrillary tangles (NFTs) found in a range of neurodegenerative tauopathies, including Alzheimer's disease. Recently, we demonstrated that tau is extensively post-translationally modified by lysine acetylation, which impairs normal tau function and promotes pathological aggregation. Identifying the enzymes that mediate tau acetylation could provide targets for future therapies aimed at reducing the burden of acetylated tau. Here, we report that mammalian tau proteins possess intrinsic enzymatic activity capable of catalyzing self-acetylation. Functional mapping of tau acetyltransferase activity followed by biochemical analysis revealed that tau uses catalytic cysteine residues in the microtubule-binding domain to facilitate tau lysine acetylation, thus suggesting a mechanism similar to that employed by MYST-family acetyltransferases. The identification of tau as an acetyltransferase provides a framework to further understand tau pathogenesis and highlights tau enzymatic activity as a potential therapeutic target.
PMCID: PMC3827724  PMID: 23624859
21.  Microtubule Stabilizing Agents as Potential Treatment for Alzheimer’s Disease and Related Neurodegenerative Tauopathies 
Journal of medicinal chemistry  2012;55(21):8979-8996.
The microtubule (MT)-associated protein tau, which is highly expressed in the axons of neurons, is an endogenous MT-stabilizing agent that plays an important role in the axonal transport. Loss of MT-stabilizing tau function, caused by misfolding, hyperphosphorylation and sequestration of tau into insoluble aggregates, leads to axonal transport deficits with neuropathological consequences. Several in vitro and preclinical in vivo studies have shown that MT-stabilizing drugs can be utilized to compensate for the loss of tau function and to maintain/restore an effective axonal transport. These findings indicate that MT-stabilizing compounds hold considerable promise for the treatment of Alzheimer disease and related tauopathies. The present article provides a synopsis of the key findings demonstrating the therapeutic potential of MT-stabilizing drugs in the context of neurodegenerative tauopathies, as well as an overview of the different classes of MT-stabilizing compounds.
PMCID: PMC3493881  PMID: 23020671
22.  Distinct α-Synuclein Strains Differentially Promote Tau Inclusions in Neurons 
Cell  2013;154(1):10.1016/j.cell.2013.05.057.
Many neurodegenerative diseases are characterized by the accumulation of insoluble protein aggregates, including neurofibrillary tangles comprised of tau in Alzheimer’s disease and Lewy bodies composed of α-synuclein in Parkinson’s disease. Moreover, different pathological proteins frequently codeposit in disease brains. To test whether aggregated α-synuclein can directly cross-seed tau fibrillization, we administered preformed α-synuclein fibrils assembled from recombinant protein to primary neurons and transgenic mice. Remarkably, we discovered two distinct strains of synthetic α-synuclein fibrils that demonstrated striking differences in the efficiency of cross-seeding tau aggregation, both in neuron cultures and in vivo. Proteinase K digestion revealed conformational differences between the two synthetic α-synuclein strains and also between sarkosyl-insoluble α-synuclein extracted from two subgroups of Parkinson’s disease brains. We speculate that distinct strains of pathological α-synuclein likely exist in neurodegenerative disease brains and may underlie the tremendous heterogeneity of synucleinopathies.
PMCID: PMC3820001  PMID: 23827677
23.  Neuropathologic substrates of Parkinson’s disease dementia 
Annals of neurology  2012;72(4):587-598.
To examine the neuropathological substrates of cognitive dysfunction and dementia in Parkinson’s disease (PD).
140 patients with a clinical diagnosis of PD and either normal cognition or onset of dementia two or more years after motor symptoms (PDD) were studied. Patients with a clinical diagnosis of dementia with Lewy bodies were excluded.
Autopsy records of genetic data and semi-quantitative scores for the burden of neurofibrillary tangles (NFTs), senile plaques (SPs), Lewy body (LB/LN) and other pathologies were used to develop a multivariate logistic regression model to determine the independent association of these variables with dementia. Correlates of co-morbid Alzheimer’s disease (PDD+AD) were also examined.
92 PD patients developed dementia and 48 remained cognitively normal. Severity of cortical LB/LN (CLB/LN) pathology was positively associated with dementia (p<0.001), with an odds-ratio (OR) of 4.06 (CI95%1.87–8.81), as was Apolipoprotein E4 (APOE4) genotype (p=0.018,OR4.19 CI95% 1.28–13.75). 28.6% of all PD cases had sufficient pathology for co-morbid AD, of which 89.5% were demented. The neuropathological diagnosis of PDD+AD correlated with an older age of PD onset (p=0.001,OR1.12 CI95%1.04–1.21), higher CLB/LN burden (p=0.037,OR 2.48 CI95%1.06–5.82), and cerebral amyloid angiopathy severity (p=0.032, OR4.16 CI95%1.13–15.30).
CLB/LN pathology is the most significant correlate of dementia in PD. Additionally, APOE4 genotype may independently influence the risk of dementia in PD. AD pathology was abundant in a subset of patients, and may modify the clinical phenotype. Thus, therapies that target α-synuclein, tau, or Aβ could potentially improve cognitive performance in PD.
PMCID: PMC3484250  PMID: 23037886
24.  White Matter Imaging Helps Dissociate Tau from TDP-43 in Frontotemporal Lobar Degeneration 
Frontotemporal lobar degeneration (FTLD) is most commonly associated with TAR-DNA binding protein (TDP-43) or tau pathology at autopsy, but there are no in vivo biomarkers reliably discriminating between sporadic cases. As disease-modifying treatments emerge, it is critical to accurately identify underlying pathology in living patients so that they can be entered into appropriate etiology-directed clinical trials. Patients with tau inclusions (FTLD-TAU) appear to have relatively greater white matter (WM) disease at autopsy than those patients with TDP-43 (FTLD-TDP). In this paper, we investigate the ability of white matter (WM) imaging to help discriminate between FTLD-TAU and FTLD-TDP during life using diffusion tensor imaging (DTI).
Patients with autopsy-confirmed disease or a genetic mutation consistent with FTLD-TDP or FTLD-TAU underwent multimodal T1 volumetric MRI and diffusion weighted imaging scans. We quantified cortical thickness in GM and fractional anisotropy (FA) in WM. We performed Eigenanatomy, a statistically robust dimensionality reduction algorithm, and used leave-one-out cross-validation to predict underlying pathology. Neuropathological assessment of GM and WM disease burden was performed in the autopsy-cases to confirm our findings of an ante-mortem GM and WM dissociation in the neuroimaging cohort.
ROC curve analyses evaluated classification accuracy in individual patients and revealed 96% sensitivity and 100% specificity for WM analyses. FTLD-TAU had significantly more WM degeneration and inclusion severity at autopsy relative to FTLD-TDP.
These neuroimaging and neuropathological investigations provide converging evidence for greater WM burden associated with FTLD-TAU, and emphasize the role of WM neuroimaging for in vivo discrimination between FTLD-TAU and FTLD-TDP.
PMCID: PMC3737288  PMID: 23475817
25.  Transmission of alpha-synuclein in Parkinson’s disease 
Molecular Neurodegeneration  2013;8(Suppl 1):O25.
PMCID: PMC3846921

Results 1-25 (138)