PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene 
Background
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are causative for frontotemporal dementia (FTD) and motor neuron disease (MND). Substantial phenotypic heterogeneity has been described in patients with these expansions. We set out to identify genetic modifiers of disease risk, age at onset, and survival after onset that may contribute to this clinical variability.
Results
We examined a cohort of 330 C9ORF72 expansion carriers and 374 controls. In these individuals, we assessed variants previously implicated in FTD and/or MND; 36 variants were included in our analysis. After adjustment for multiple testing, our analysis revealed three variants significantly associated with age at onset (rs7018487 [UBAP1; p-value = 0.003], rs6052771 [PRNP; p-value = 0.003], and rs7403881 [MT-Ie; p-value = 0.003]), and six variants significantly associated with survival after onset (rs5848 [GRN; p-value = 0.001], rs7403881 [MT-Ie; p-value = 0.001], rs13268953 [ELP3; p-value = 0.003], the epsilon 4 allele [APOE; p-value = 0.004], rs12608932 [UNC13A; p-value = 0.003], and rs1800435 [ALAD; p-value = 0.003]).
Conclusions
Variants identified through this study were previously reported to be involved in FTD and/or MND, but we are the first to describe their effects as potential disease modifiers in the presence of a clear pathogenic mutation (i.e. C9ORF72 repeat expansion). Although validation of our findings is necessary, these variants highlight the importance of protein degradation, antioxidant defense and RNA-processing pathways, and additionally, they are promising targets for the development of therapeutic strategies and prognostic tests.
Electronic supplementary material
The online version of this article (doi:10.1186/1750-1326-9-38) contains supplementary material, which is available to authorized users.
doi:10.1186/1750-1326-9-38
PMCID: PMC4190282  PMID: 25239657
C9ORF72; Frontotemporal dementia; Motor neuron disease; Genetic modifier; Repeat expansion
2.  TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia 
Journal of neurochemistry  2013;126(6):781-791.
Frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in individuals under age 65. In many patients, the predominant pathology includes neuronal cytoplasmic or intranuclear inclusions of ubiquitinated TAR DNA binding protein 43 (FTLDTDP). Recently, a genome-wide association study identified the first FTLD-TDP genetic risk factor, in which variants in and around the TMEM106B gene (top SNP rs1990622) were significantly associated with FTLD-TDP risk. Intriguingly, the most significant association was in FTLD-TDP patients carrying progranulin (GRN) mutations. Here we investigated to what extent the coding variant, rs3173615 (p.T185S) in linkage disequilibrium with rs1990622, affects progranulin protein (PGRN) biology and TMEM106B protein regulation.
First, we confirmed the association of TMEM106B variants with FTLD-TDP in a new cohort of GRN mutation carriers. We next generated and characterized a TMEM106B-specific antibody for investigation of this protein. Enzyme-linked immunoassay analysis of PGRN levels showed similar effects upon T185 and S185 TMEM106B overexpression. However, overexpression of T185 consistently led to higher TMEM106B protein levels than S185. Cycloheximide treatment experiments revealed that S185 degrades faster than T185 TMEM106B, potentially due to differences in N-glycosylation at residue N183. Together, our results provide a potential mechanism by which TMEM106B variants lead to differences in FTLD-TDP risk.
doi:10.1111/jnc.12329
PMCID: PMC3766501  PMID: 23742080
TMEM106B; frontotemporal dementia; progranulin; glycosylation
3.  Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers 
Neurology  2013;81(15):1322-1331.
Objective:
In this prospective cohort study, we investigated cerebral glucose metabolism reductions on [18F]-fluorodeoxyglucose (FDG)-PET in progranulin (GRN) mutation carriers prior to frontotemporal dementia (FTD) onset.
Methods:
Nine mutation carriers (age 51.5 ± 13.5 years) and 11 noncarriers (age 52.7 ± 9.5 years) from 5 families with FTD due to GRN mutations underwent brain scanning with FDG-PET and MRI and clinical evaluation. Normalized FDG uptake values were calculated with reference to the pons. PET images were analyzed with regions of interest (ROI) and statistical parametric mapping (SPM) approaches.
Results:
Compared with noncarriers, GRN mutation carriers had a lowered anterior-to-posterior (AP) ratio of FDG uptake (0.86 ± 0.09 vs 0.92 ± 0.05) and less left-right asymmetry, consistent with an overall pattern of right anterior cerebral hypometabolism. This pattern was observed regardless of whether they were deemed clinically symptomatic no dementia or asymptomatic. Individual ROIs with lowered FDG uptake included right anterior cingulate, insula, and gyrus rectus. SPM analysis supported and extended these findings, demonstrating abnormalities in the right and left medial frontal regions, right insular cortex, right precentral and middle frontal gyri, and right cerebellum. Right AP ratio was correlated with cognitive and clinical scores (modified Mini-Mental State Examination r = 0.74; Functional Rating Scale r = −0.73) but not age and years to estimated onset in mutation carriers.
Conclusion:
The frontotemporal lobar degenerative process associated with GRN mutations appears to begin many years prior to the average age at FTD onset (late 50s–early 60s). Right medial and ventral frontal cortex and insula may be affected in this process but the specific regional patterns associated with specific clinical variants remain to be elucidated.
doi:10.1212/WNL.0b013e3182a8237e
PMCID: PMC3806924  PMID: 24005336
4.  C9ORF72 repeat expansions in cases with previously identified pathogenic mutations 
Neurology  2013;81(15):1332-1341.
Objective:
To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases.
Methods:
A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology.
Results:
We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations.
Conclusions:
Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members.
doi:10.1212/WNL.0b013e3182a8250c
PMCID: PMC3806926  PMID: 24027057
5.  Early-onset dementias: diagnostic and etiological considerations 
Alzheimer's Research & Therapy  2013;5(Suppl 1):S7.
This paper summarizes the body of literature about early-onset dementia (EOD) that led to recommendations from the Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. A broader differential diagnosis is required for EOD compared with late-onset dementia. Delays in diagnosis are common, and the social impact of EOD requires special care teams. The etiologies underlying EOD syndromes should take into account family history and comorbid diseases, such as cerebrovascular risk factors, that may influence the clinical presentation and age at onset. For example, although many EODs are more likely to have Mendelian genetic and/or metabolic causes, the presence of comorbidities may drive the individual at risk for late-onset dementia to manifest the symptoms at an earlier age, which contributes further to the observed heterogeneity and may confound diagnostic investigation. A personalized medicine approach to diagnosis should therefore be considered depending on the age at onset, clinical presentation, and comorbidities. Genetic counseling and testing as well as specialized biochemical screening are often required, especially in those under the age of 40 and in those with a family history of autosomal dominant or recessive disease. Novel treatments in the drug development pipeline for EOD, such as genetic forms of Alzheimer's disease, should target the specific pathogenic cascade implicated by the mutation or biochemical defect.
doi:10.1186/alzrt197
PMCID: PMC3936399  PMID: 24565469
6.  Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p 
Brain  2012;135(3):709-722.
Frontotemporal dementia and amyotrophic lateral sclerosis are closely related clinical syndromes with overlapping molecular pathogenesis. Several families have been reported with members affected by frontotemporal dementia, amyotrophic lateral sclerosis or both, which show genetic linkage to a region on chromosome 9p21. Recently, two studies identified the FTD/ALS gene defect on chromosome 9p as an expanded GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72). In the present study, we provide detailed analysis of the clinical features and neuropathology for 16 unrelated families with frontotemporal dementia caused by the C9ORF72 mutation. All had an autosomal dominant pattern of inheritance. Eight families had a combination of frontotemporal dementia and amyotrophic lateral sclerosis while the other eight had a pure frontotemporal dementia phenotype. Clinical information was available for 30 affected members of the 16 families. There was wide variation in age of onset (mean = 54.3, range = 34–74 years) and disease duration (mean = 5.3, range = 1–16 years). Early diagnoses included behavioural variant frontotemporal dementia (n = 15), progressive non-fluent aphasia (n = 5), amyotrophic lateral sclerosis (n = 9) and progressive non-fluent aphasia–amyotrophic lateral sclerosis (n = 1). Heterogeneity in clinical presentation was also common within families. However, there was a tendency for the phenotypes to converge with disease progression; seven subjects had final clinical diagnoses of both frontotemporal dementia and amyotrophic lateral sclerosis and all of those with an initial progressive non-fluent aphasia diagnosis subsequently developed significant behavioural abnormalities. Twenty-one affected family members came to autopsy and all were found to have transactive response DNA binding protein with Mr 43 kD (TDP-43) pathology in a wide neuroanatomical distribution. All had involvement of the extramotor neocortex and hippocampus (frontotemporal lobar degeneration-TDP) and all but one case (clinically pure frontotemporal dementia) had involvement of lower motor neurons, characteristic of amyotrophic lateral sclerosis. In addition, a consistent and relatively specific pathological finding was the presence of neuronal inclusions in the cerebellar cortex that were ubiquitin/p62-positive but TDP-43-negative. Our findings indicate that the C9ORF72 mutation is a major cause of familial frontotemporal dementia with TDP-43 pathology, that likely accounts for the majority of families with combined frontotemporal dementia/amyotrophic lateral sclerosis presentation, and further support the concept that frontotemporal dementia and amyotrophic lateral sclerosis represent a clinicopathological spectrum of disease with overlapping molecular pathogenesis.
doi:10.1093/brain/awr354
PMCID: PMC3286328  PMID: 22344582
frontotemporal dementia; frontotemporal lobar degeneration; amyotrophic lateral sclerosis; C9ORF72, TDP-43
7.  Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis 
Neuron  2011;72(2):245-256.
SUMMARY
Several families have been reported with autosomal dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here we report an expansion of a non-coding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43 based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (22.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS.
doi:10.1016/j.neuron.2011.09.011
PMCID: PMC3202986  PMID: 21944778
8.  Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family 
Background
Frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) is a heritable form of FTD, but the gene(s) responsible for the majority of autosomal dominant FTD-ALS cases have yet to be found. Previous studies have identified a region on chromosome 9p that is associated with FTD and ALS.
Methods
The authors report the clinical, volumetric MRI, neuropathological and genetic features of a new chromosome 9p-linked FTD-ALS family, VSM-20.
Results
Ten members of family VSM-20 displayed heterogeneous clinical phenotypes of isolated behavioural-variant FTD (bvFTD), ALS or a combination of the two. Parkinsonism was common, with one individual presenting with a corticobasal syndrome. Analysis of structural MRI scans from five affected family members revealed grey- and white-matter loss that was most prominent in the frontal lobes, with mild parietal and occipital lobe atrophy, but less temporal lobe atrophy than in 10 severity-matched sporadic bvFTD cases. Autopsy in three family members showed a consistent and unique subtype of FTLD-TDP pathology. Genome-wide linkage analysis conclusively linked family VSM-20 to a 28.3 cM region between D9S1808 and D9S251 on chromosome 9p, reducing the published minimal linked region to a 3.7 Mb interval. Genomic sequencing and expression analysis failed to identify mutations in the 10 known and predicted genes within this candidate region, suggesting that next-generation sequencing may be needed to determine the mutational mechanism associated with chromosome 9p-linked FTD-ALS.
Conclusions
Family VSM-20 significantly reduces the region linked to FTD-ALS on chromosome 9p. A distinct pattern of brain atrophy and neuropathological findings may help to identify other families with FTD-ALS caused by this genetic abnormality.
doi:10.1136/jnnp.2009.204081
PMCID: PMC3017222  PMID: 20562461
9.  rs5848 Polymorphism and Serum Progranulin Level 
Objective
To assess the influence of rs5848 polymorphism in serum progranulin (PGRN) level in a cohort of subjects with Alzheimer and related dementias from a tertiary referral clinic.
Background
Mutations in the GRN gene cause autosomal dominant frontotemporal dementia (FTD) with TDP-43 pathology (FTLD-TDP) through haploinsufficiency. It has recently been shown that homozygous carriers of the T-allele of rs5848 have an elevated risk developing FTD, and this polymorphism may play a role in the pathogenesis of other dementia by modifying progranulin level. We hypothesize that genotype of rs5848 may influence serum PGRN level in AD, FTD, and other dementias.
Methods
Blood samples were obtained from patients with cognitive impairment and dementia referred to a tertiary dementia clinic, as well as samples from a cohort of healthy controls. Serum PGRN level was measured using an ELISA assay, and rs5848 genotype was determined by a TaqMan assay.
Results
We found that rs5848 SNP significantly influenced serum PGRN level, with TT genotype having the lowest levels, CC the highest. This relationship is observed in each of the subgroups. We also confirmed that GRN mutation carriers had significantly lower serum PGRN levels than all other groups.
Conclusions
The rs5848 polymorphism significantly influences serum PGRN with TT carriers having a lower level of serum PGRN then CT and CC carriers. This is consistent with the finding that miR-659 binding to the high risk T allele of rs5848 may augment translational inhibition of GRN and alter risk of FTD and possibly other dementias.
doi:10.1016/j.jns.2010.10.009
PMCID: PMC3085023  PMID: 21047645
Frontotemporal Dementia; Progranulin; PGRN; GRN; rs5848; genetic polymorphism; biomarker
10.  Promotion of the mind through exercise (PROMoTE): a proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment 
BMC Neurology  2010;10:14.
Background
Sub-cortical vascular ischaemia is the second most common etiology contributing to cognitive impairment in older adults, and is frequently under-diagnosed and under-treated. Although evidence is mounting that exercise has benefits for cognitive function among seniors, very few randomized controlled trials of exercise have been conducted in populations at high-risk for progression to dementia. Aerobic-based exercise training may be of specific benefit in delaying the progression of cognitive decline among seniors with vascular cognitive impairment by reducing key vascular risk factors associated with metabolic syndrome. Thus, we aim to carry out a proof-of-concept single-blinded randomized controlled trial primarily designed to provide preliminary evidence of efficacy aerobic-based exercise training program on cognitive and everyday function among older adults with mild sub-cortical ischaemic vascular cognitive impairment.
Methods/Design
A proof-of-concept single-blinded randomized trial comparing a six-month, thrice-weekly, aerobic-based exercise training group with usual care on cognitive and everyday function. Seventy older adults who meet the diagnostic criteria for sub-cortical ischaemic vascular cognitive impairment as outlined by Erkinjuntti and colleagues will be recruited from a memory clinic of a metropolitan hospital. The aerobic-based exercise training will last for 6 months. Participants will be followed for an additional six months after the cessation of exercise training.
Discussion
This research will be an important first step in quantifying the effect of an exercise intervention on cognitive and daily function among seniors with sub-cortical ischaemic vascular cognitive impairment, a recognized risk state for progression to dementia. Exercise has the potential to be an effective, inexpensive, and accessible intervention strategy with minimal adverse effects. Reducing the rate of cognitive decline among seniors with sub-cortical ischaemic vascular cognitive impairment could preserve independent functioning and health related quality of life in this population. This, in turn, could lead to reduced health care resource utilization costs and avoidance of early institutional care.
Trial Registration
ClinicalTrials.gov Protocol Registration System: NCT01027858.
doi:10.1186/1471-2377-10-14
PMCID: PMC2830197  PMID: 20158920
11.  Apolipoprotein E ε4 genotype as a risk factor for cognitive decline and dementia: data from the Canadian Study of Health and Aging  
Background
Apolipoprotein E (ApoE) ε4 genotype is a well-established risk factor for Alzheimer's disease (AD). However, its effect on predicting conversion from normal to “cognitive impairment, no dementia” (CIND) and from CIND to AD is less clear.
Methods
We used a nested case–control design from the population-based Canadian Study of Health and Aging (CSHA) to examine the effect of ApoE ε4 genotype on the conversion of subjects from normal to CIND and from CIND to AD. We also contrasted these findings with incident cases of AD and vascular dementia (VaD) in the CSHA cohort.
Results
The ApoE ε4 genotype was a significant risk factor for conversion from CIND to AD and from normal to AD and VaD. However, it was not a significant risk factor for conversion from normal to CIND. This effect is robust to adjustment for age, sex and education level. There is significant interaction between the ApoE ε4 genotype and age for AD and for conversion from CIND to AD. No interaction between ApoE ε4 genotype, sex, age, ethnicity and education level was found in other subgroup analyses. The positive predictive value of ApoE ε4 for predicting CIND conversion to AD was 0.48, and the negative predictive value was 0.65.
Interpretation
Possession of an ApoE ε4 allele increases the risk of AD developing from CIND. It is also associated with a decrease in the age at onset of AD. Its predictive values do not support its utility as a diagnostic test for predicting progression from CIND to AD, but it may be useful in research studies to enrich study samples that have a higher rate of progression to AD.
doi:10.1503/cmaj.1031789
PMCID: PMC522651  PMID: 15477624

Results 1-11 (11)