PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (201)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  A Paired RNAi and RabGAP Overexpression Screen Identifies Rab11 as a Regulator of β-Amyloid Production 
Cell reports  2013;5(6):1536-1551.
Summary
Alzheimer’s disease (AD) is characterized by cerebral deposition of β-amyloid (Aβ) peptides, which are generated from amyloid precursor protein (APP) by β- and γ-secretases. APP and the secretases are membrane associated, but whether membrane trafficking controls Aβ levels is unclear. Here, we performed an RNAi screen of all human Rab-GTPases, which regulate membrane trafficking, complemented with a Rab-GTPase-activating protein screen, and present a road map of the membrane-trafficking events regulating Aβ production. We identify Rab11 and Rab3 as key players. Although retromers and retromer-associated proteins control APP recycling, we show that Rab11 controlled β-secretase endosomal recycling to the plasma membrane and thus affected Aβ production. Exome sequencing revealed a significant genetic association of Rab11A with late-onset AD, and network analysis identified Rab11A and Rab11B as components of the late-onset AD risk network, suggesting a causal link between Rab11 and AD. Our results reveal trafficking pathways that regulate Aβ levels and show how systems biology approaches can unravel the molecular complexity underlying AD.
doi:10.1016/j.celrep.2013.12.005
PMCID: PMC4004174  PMID: 24373285
2.  A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease 
Holmans, Peter | Moskvina, Valentina | Jones, Lesley | Sharma, Manu | Vedernikov, Alexey | Buchel, Finja | Sadd, Mohamad | Bras, Jose M. | Bettella, Francesco | Nicolaou, Nayia | Simón-Sánchez, Javier | Mittag, Florian | Gibbs, J. Raphael | Schulte, Claudia | Durr, Alexandra | Guerreiro, Rita | Hernandez, Dena | Brice, Alexis | Stefánsson, Hreinn | Majamaa, Kari | Gasser, Thomas | Heutink, Peter | Wood, Nicholas W. | Martinez, Maria | Singleton, Andrew B. | Nalls, Michael A. | Hardy, John | Morris, Huw R. | Williams, Nigel M. | Arepalli, Sampath | Barker, Roger | Barrett, Jeffrey | Ben-Shlomo, Yoav | Berendse, Henk W. | Berg, Daniela | Bhatia, Kailash | de Bie, Rob M.A. | Biffi, Alessandro | Bloem, Bas | Brice, Alexis | Bochdanovits, Zoltan | Bonin, Michael | Bras, Jose M. | Brockmann, Kathrin | Brooks, Janet | Burn, David J. | Charlesworth, Gavin | Chen, Honglei | Chinnery, Patrick F. | Chong, Sean | Clarke, Carl E. | Cookson, Mark R. | Cooper, Jonathan M. | Corvol, Jen-Christophe | Counsell, Carl | Damier, Philippe | Dartigues, Jean Francois | Deloukas, Panagiotis | Deuschl, Günther | Dexter, David T. | van Dijk, Karin D. | Dillman, Allissa | Durif, Frank | Durr, Alexandra | Edkins, Sarah | Evans, Jonathan R. | Foltynie, Thomas | Gao, Jianjun | Gardner, Michelle | Gasser, Thomas | Gibbs, J. Raphael | Goate, Alison | Gray, Emma | Guerreiro, Rita | Gústafsson, Ómar | Hardy, John | Harris, Clare | Hernandez, Dena G. | Heutink, Peter | van Hilten, Jacobus J. | Hofman, Albert | Hollenbeck, Albert | Holmans, Peter | Holton, Janice | Hu, Michele | Huber, Heiko | Hudson, Gavin | Hunt, Sarah E. | Huttenlocher, Johanna | Illig, Thomas | Langford, Cordelia | Lees, Andrew | Lesage, Suzanne | Lichtner, Peter | Limousin, Patricia | Lopez, Grisel | Lorenz, Delia | Martinez, Maria | McNeill, Alisdair | Moorby, Catriona | Moore, Matthew | Morris, Huw | Morrison, Karen E. | Moskvina, Valentina | Mudanohwo, Ese | Nalls, Michael A. | Pearson, Justin | Perlmutter, Joel S. | Pétursson, Hjörvar | Plagnol, Vincent | Pollak, Pierre | Post, Bart | Potter, Simon | Ravina, Bernard | Revesz, Tamas | Riess, Olaf | Rivadeneira, Fernando | Rizzu, Patrizia | Ryten, Mina | Saad, Mohamad | Sawcer, Stephen | Schapira, Anthony | Scheffer, Hans | Sharma, Manu | Shaw, Karen | Sheerin, Una-Marie | Shoulson, Ira | Schulte, Claudia | Sidransky, Ellen | Simón-Sánchez, Javier | Singleton, Andrew B. | Smith, Colin | Stefánsson, Hreinn | Stefánsson, Kári | Steinberg, Stacy | Stockton, Joanna D. | Sveinbjornsdottir, Sigurlaug | Talbot, Kevin | Tanner, Carlie M. | Tashakkori-Ghanbaria, Avazeh | Tison, François | Trabzuni, Daniah | Traynor, Bryan J. | Uitterlinden, André G. | Velseboer, Daan | Vidailhet, Marie | Walker, Robert | van de Warrenburg, Bart | Wickremaratchi, Mirdhu | Williams, Nigel | Williams-Gray, Caroline H. | Winder-Rhodes, Sophie | Wood, Nicholas
Human Molecular Genetics  2012;22(5):1039-1049.
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1–2% in people >60 and 3–4% in people >80. Genome-wide association (GWA) studies have now implicated significant evidence for association in at least 18 genomic regions. We have studied a large PD-meta analysis and identified a significant excess of SNPs (P < 1 × 10−16) that are associated with PD but fall short of the genome-wide significance threshold. This result was independent of variants at the 18 previously implicated regions and implies the presence of additional polygenic risk alleles. To understand how these loci increase risk of PD, we applied a pathway-based analysis, testing for biological functions that were significantly enriched for genes containing variants associated with PD. Analysing two independent GWA studies, we identified that both had a significant excess in the number of functional categories enriched for PD-associated genes (minimum P = 0.014 and P = 0.006, respectively). Moreover, 58 categories were significantly enriched for associated genes in both GWA studies (P < 0.001), implicating genes involved in the ‘regulation of leucocyte/lymphocyte activity’ and also ‘cytokine-mediated signalling’ as conferring an increased susceptibility to PD. These results were unaltered by the exclusion of all 178 genes that were present at the 18 genomic regions previously reported to be strongly associated with PD (including the HLA locus). Our findings, therefore, provide independent support to the strong association signal at the HLA locus and imply that the immune-related genetic susceptibility to PD is likely to be more widespread in the genome than previously appreciated.
doi:10.1093/hmg/dds492
PMCID: PMC3561909  PMID: 23223016
3.  Age-at-Onset in Late Onset Alzheimer Disease is Modified by Multiple Genetic Loci 
JAMA neurology  2014;71(11):1394-1404.
Importance
As APOE locus variants contribute to both risk of late-onset Alzheimer disease and differences in age-at-onset, it is important to know if other established late-onset Alzheimer disease risk loci also affect age-at-onset in cases.
Objectives
To investigate the effects of known Alzheimer disease risk loci in modifying age-at-onset, and to estimate their cumulative effect on age-at-onset variation, using data from genome-wide association studies in the Alzheimer’s Disease Genetics Consortium (ADGC).
Design, Setting and Participants
The ADGC comprises 14 case-control, prospective, and family-based datasets with data on 9,162 Caucasian participants with Alzheimer’s occurring after age 60 who also had complete age-at-onset information, gathered between 1989 and 2011 at multiple sites by participating studies. Data on genotyped or imputed single nucleotide polymorphisms (SNPs) most significantly associated with risk at ten confirmed LOAD loci were examined in linear modeling of AAO, and individual dataset results were combined using a random effects, inverse variance-weighted meta-analysis approach to determine if they contribute to variation in age-at-onset. Aggregate effects of all risk loci on AAO were examined in a burden analysis using genotype scores weighted by risk effect sizes.
Main Outcomes and Measures
Age at disease onset abstracted from medical records among participants with late-onset Alzheimer disease diagnosed per standard criteria.
Results
Analysis confirmed association of APOE with age-at-onset (rs6857, P=3.30×10−96), with associations in CR1 (rs6701713, P=7.17×10−4), BIN1 (rs7561528, P=4.78×10−4), and PICALM (rs561655, P=2.23×10−3) reaching statistical significance (P<0.005). Risk alleles individually reduced age-at-onset by 3-6 months. Burden analyses demonstrated that APOE contributes to 3.9% of variation in age-at-onset (R2=0.220) over baseline (R2=0.189) whereas the other nine loci together contribute to 1.1% of variation (R2=0.198).
Conclusions and Relevance
We confirmed association of APOE variants with age-at-onset among late-onset Alzheimer disease cases and observed novel associations with age-at-onset in CR1, BIN1, and PICALM. In contrast to earlier hypothetical modeling, we show that the combined effects of Alzheimer disease risk variants on age-at-onset are on the scale of, but do not exceed, the APOE effect. While the aggregate effects of risk loci on age-at-onset may be significant, additional genetic contributions to age-at-onset are individually likely to be small.
doi:10.1001/jamaneurol.2014.1491
PMCID: PMC4314944  PMID: 25199842
Alzheimer Disease; Alzheimer Disease Genetics; Alzheimer’s Disease - Pathophysiology; Genetics of Alzheimer Disease; Aging
5.  Genetic Variants and Related Biomarkers in Sporadic Alzheimer’s Disease 
From a neuropathological perspective, elderly patients who die with a clinical diagnosis of sporadic Alzheimer’s disease (AD) are a heterogeneous group with several different pathologies contributing to the AD phenotype. This poses a challenge when searching for low effect size susceptibility genes for AD. Further, control groups may be contaminated by significant numbers of preclinical AD patients, which also reduces the power of genetic association studies. Here, we discuss how cerebrospinal fluid and imaging biomarkers can be used to increase the chance of finding novel susceptibility genes and as a means to study the functional consequences of risk alleles.
doi:10.1007/s40142-014-0062-6
PMCID: PMC4317514  PMID: 25664224
Cerebrospinal fluid; Imaging biomarkers; Novel susceptibility genes; Risk alleles
6.  Novel CLN3 mutation causing autophagic vacuolar myopathy 
Neurology  2014;82(23):2072-2076.
Objective:
To identify the genetic cause of a complex syndrome characterized by autophagic vacuolar myopathy (AVM), hypertrophic cardiomyopathy, pigmentary retinal degeneration, and epilepsy.
Methods:
Clinical, pathologic, and genetic study.
Results:
Two brothers presented with visual failure, seizures, and prominent cardiac involvement, but only mild cognitive impairment and no motor deterioration after 40 years of disease duration. Muscle biopsy revealed the presence of widespread alterations suggestive of AVM with autophagic vacuoles with sarcolemmal features. Through combined homozygosity mapping and exome sequencing, we identified a novel p.Gly165Glu mutation in CLN3.
Conclusions:
This study expands the clinical phenotype of CLN3 disease. Genetic testing for CLN3 should be considered in AVM with autophagic vacuoles with sarcolemmal features.
doi:10.1212/WNL.0000000000000490
PMCID: PMC4118497  PMID: 24827497
7.  Homozygosity analysis in amyotrophic lateral sclerosis 
European Journal of Human Genetics  2013;21(12):1429-1435.
Amyotrophic lateral sclerosis (ALS) may appear to be familial or sporadic, with recognised dominant and recessive inheritance in a proportion of cases. Sporadic ALS may be caused by rare homozygous recessive mutations. We studied patients and controls from the UK and a multinational pooled analysis of GWAS data on homozygosity in ALS to determine any potential recessive variant leading to the disease. Six-hundred and twenty ALS and 5169 controls were studied in the UK cohort. A total of 7646 homozygosity segments with length >2 Mb were identified, and 3568 rare segments remained after filtering ‘common' segments. The mean total of the autosomal genome with homozygosity segments was longer in ALS than in controls (unfiltered segments, P=0.05). Two-thousand and seventeen ALS and 6918 controls were studied in the pooled analysis. There were more regions of homozygosity segments per case (P=1 × 10−5), a greater proportion of cases harboured homozygosity (P=2 × 10−5), a longer average length of segment (P=1 × 10−5), a longer total genome coverage (P=1 × 10−5), and a higher rate of these segments overlapped with RefSeq gene regions (P=1 × 10−5), in ALS patients than controls. Positive associations were found in three regions. The most significant was in the chromosome 21 SOD1 region, and also chromosome 1 2.9–4.8 Mb, and chromosome 5 in the 65 Mb region. There are more than twenty potential genes in these regions. These findings point to further possible rare recessive genetic causes of ALS, which are not identified as common variants in GWAS.
doi:10.1038/ejhg.2013.59
PMCID: PMC3829775  PMID: 23612577
amyotrophic lateral sclerosis; homozygosity; recessive
8.  Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies 
Human molecular genetics  2014;23(23):6139-6146.
Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson’s and Alzheimer’s diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.
doi:10.1093/hmg/ddu334
PMCID: PMC4222357  PMID: 24973356
9.  Investigating the role of rare coding variability in Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP) in late-onset Alzheimer's disease 
Neurobiology of Aging  2014;35(12):2881.e1-2881.e6.
The overlapping clinical and neuropathologic features between late-onset apparently sporadic Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and other neurodegenerative dementias (frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, and Creutzfeldt-Jakob disease) raise the question of whether shared genetic risk factors may explain the similar phenotype among these disparate disorders. To investigate this intriguing hypothesis, we analyzed rare coding variability in 6 Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP), in 141 LOAD patients and 179 elderly controls, neuropathologically proven, from the UK. In our cohort, 14 LOAD cases (10%) and 11 controls (6%) carry at least 1 rare variant in the genes studied. We report a novel variant in PSEN1 (p.I168T) and a rare variant in PSEN2 (p.A237V), absent in controls and both likely pathogenic. Our findings support previous studies, suggesting that (1) rare coding variability in PSEN1 and PSEN2 may influence the susceptibility for LOAD and (2) GRN, MAPT, and PRNP are not major contributors to LOAD. Thus, genetic screening is pivotal for the clinical differential diagnosis of these neurodegenerative dementias.
Highlights
•We have used exome sequencing to investigate rare coding variability in Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP) in a cohort composed of 141 late-onset sporadic Alzheimer's disease cases and 179 elderly controls, autopsy proven from the UK.•We report a novel mutation in PSEN1 (p.I168T) and a rare variant in PSEN2 (p.A237V), both likely pathogenic.•We conclude that PSEN1 and PSEN2 harbor susceptibility factors for sporadic Alzheimer's disease. By contrast, GRN, MAPT, and PRNP do not play a major role for the development of late-onset sporadic Alzheimer's disease.•Genetic screening is therefore pivotal for a clinical differential diagnosis of sporadic late-onset Alzheimer's disease and other neurodegenerative dementias (frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, and Creutzfeldt-Jakob disease).
doi:10.1016/j.neurobiolaging.2014.06.002
PMCID: PMC4236585  PMID: 25104557
Alzheimer's disease; Neurodegenerative dementia; APP; PSEN1; PSEN2; MAPT; GRN; PRNP; Exome sequencing
10.  Genomewide association study in cervical dystonia demonstrates possible association with sodium leak channel 
Movement Disorders  2013;29(2):245-251.
Dystonia is a common movement disorder. A number of monogenic causes have been identified. However, the majority of dystonia cases are not explained by single gene defects. Cervical dystonia is one of the commonest forms without genetic causes identified. This pilot study aimed to identify large effect-size risk loci in cervical dystonia. A genomewide association study (GWAS) was performed. British resident cervical dystonia patients of European descent were genotyped using the Illumina-610-Quad. Comparison was made with controls of European descent from the Wellcome Trust Case Control Consortium using logistic regression algorithm from PLINK. SNPs not genotyped by the array were imputed with 1000 Genomes Project data using the MaCH algorithm and minimac. Postimputation analysis was done with the mach2dat algorithm using a logistic regression model. After quality control measures, 212 cases were compared with 5173 controls. No single SNP passed the genomewide significant level of 5 × 10−8 in the analysis of genotyped SNP in PLINK. Postimputation, there were 5 clusters of SNPs that had P value <5 × 10−6, and the best cluster of SNPs was found near exon 1 of NALCN, (sodium leak channel) with P = 9.76 × 10−7. Several potential regions were found in the GWAS and imputation analysis. The lowest P value was found in NALCN. Dysfunction of this ion channel is a plausible cause for dystonia. Further replication in another cohort is needed to confirm this finding. We make this data publicly available to encourage further analyses of this disorder.
doi:10.1002/mds.25732
PMCID: PMC4208301  PMID: 24227479
cervical dystonia; GWAS; imputation; sodium leaking channel; NALCN
11.  Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions 
Introduction
Early onset isolated dystonia (DYT1) is linked to a three base pair deletion (ΔGAG) mutation in the TOR1A gene. Clinical manifestation includes intermittent muscle contraction leading to twisting movements or abnormal postures. Neuropathological studies on DYT1 cases are limited, most showing no significant abnormalities. In one study, brainstem intraneuronal inclusions immunoreactive for ubiquitin, torsinA and lamin A/C were described. Using the largest series reported to date comprising 7 DYT1 cases, we aimed to identify consistent neuropathological features in the disease and determine whether we would find the same intraneuronal inclusions as previously reported.
Result
The pathological changes of brainstem inclusions reported in DYT1 dystonia were not replicated in our case series. Other anatomical regions implicated in dystonia showed no disease-specific pathological intracellular inclusions or evidence of more than mild neuronal loss.
Conclusion
Our findings suggest that the intracellular inclusions described previously in DYT1 dystonia may not be a hallmark feature of the disorder. In isolated dystonia, DYT1 in particular, biochemical changes may be more relevant than the morphological changes.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-014-0159-x) contains supplementary material, which is available to authorized users.
doi:10.1186/s40478-014-0159-x
PMCID: PMC4247124  PMID: 25403864
DYT1; Neuropathology; Isolated dystonia; Inclusions
12.  Genome-wide Association Study of Obsessive-Compulsive Disorder 
Stewart, S Evelyn | Yu, Dongmei | Scharf, Jeremiah M | Neale, Benjamin M | Fagerness, Jesen A | Mathews, Carol A | Arnold, Paul D | Evans, Patrick D | Gamazon, Eric R | Osiecki, Lisa | McGrath, Lauren | Haddad, Stephen | Crane, Jacquelyn | Hezel, Dianne | Illman, Cornelia | Mayerfeld, Catherine | Konkashbaev, Anuar | Liu, Chunyu | Pluzhnikov, Anna | Tikhomirov, Anna | Edlund, Christopher K | Rauch, Scott L | Moessner, Rainald | Falkai, Peter | Maier, Wolfgang | Ruhrmann, Stephan | Grabe, Hans-Jörgen | Lennertz, Leonard | Wagner, Michael | Bellodi, Laura | Cavallini, Maria Cristina | Richter, Margaret A | Cook, Edwin H | Kennedy, James L | Rosenberg, David | Stein, Dan J | Hemmings, Sian MJ | Lochner, Christine | Azzam, Amin | Chavira, Denise A | Fournier, Eduardo | Garrido, Helena | Sheppard, Brooke | Umaña, Paul | Murphy, Dennis L | Wendland, Jens R | Veenstra-VanderWeele, Jeremy | Denys, Damiaan | Blom, Rianne | Deforce, Dieter | Van Nieuwerburgh, Filip | Westenberg, Herman GM | Walitza, Susanne | Egberts, Karin | Renner, Tobias | Miguel, Euripedes Constantino | Cappi, Carolina | Hounie, Ana G | Conceição do Rosário, Maria | Sampaio, Aline S | Vallada, Homero | Nicolini, Humberto | Lanzagorta, Nuria | Camarena, Beatriz | Delorme, Richard | Leboyer, Marion | Pato, Carlos N | Pato, Michele T | Voyiaziakis, Emanuel | Heutink, Peter | Cath, Danielle C | Posthuma, Danielle | Smit, Jan H | Samuels, Jack | Bienvenu, O Joseph | Cullen, Bernadette | Fyer, Abby J | Grados, Marco A | Greenberg, Benjamin D | McCracken, James T | Riddle, Mark A | Wang, Ying | Coric, Vladimir | Leckman, James F | Bloch, Michael | Pittenger, Christopher | Eapen, Valsamma | Black, Donald W | Ophoff, Roel A | Strengman, Eric | Cusi, Daniele | Turiel, Maurizio | Frau, Francesca | Macciardi, Fabio | Gibbs, J Raphael | Cookson, Mark R | Singleton, Andrew | Hardy, John | Crenshaw, Andrew T | Parkin, Melissa A | Mirel, Daniel B | Conti, David V | Purcell, Shaun | Nestadt, Gerald | Hanna, Gregory L | Jenike, Michael A | Knowles, James A | Cox, Nancy | Pauls, David L
Molecular psychiatry  2012;18(7):788-798.
Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD.
doi:10.1038/mp.2012.85
PMCID: PMC4218751  PMID: 22889921
Obsessive-compulsive disorder; GWAS; Genetic; Genomic; Neurodevelopmental disorder; DLGAP
13.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis 
Nature neuroscience  2014;17(5):664-666.
MATR3 is an RNA/DNA binding protein that interacts with TDP-43, a major disease protein linked to amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in the spinal cords of ALS cases with and without MATR3 mutations. Our data provide additional evidence supporting the role of aberrant RNA processing in motor neuron degeneration.
doi:10.1038/nn.3688
PMCID: PMC4000579  PMID: 24686783
14.  A nonsense mutation in PRNP associated with clinical Alzheimer's disease☆ 
Neurobiology of Aging  2014;35(11):2656.e13-2656.e16.
Here, we describe a nonsense haplotype in PRNP associated with clinical Alzheimer's disease. The patient presented an early-onset of cognitive decline with memory loss as the primary cognitive problem. Whole-exome sequencing revealed a nonsense mutation in PRNP (NM_000311, c.C478T; p.Q160*; rs80356711) associated with homozygosity for the V allele at position 129 of the protein, further highlighting how very similar genotypes in PRNP result in strikingly different phenotypes.
doi:10.1016/j.neurobiolaging.2014.05.013
PMCID: PMC4175176  PMID: 24958194
Alzheimer's disease; Prion; PRNP; Nonsense mutation; Exome sequencing
15.  A nonsense mutation in PRNP associated with clinical Alzheimer’s disease 
Neurobiology of aging  2014;35(11):2656.e13-2656.e16.
Here, we describe a nonsense haplotype in PRNP associated with clinical Alzheimer’s disease. The patient presented an early-onset of cognitive decline with memory loss as the primary cognitive problem. Whole-exome sequencing revealed a nonsense mutation in PRNP (NM_000311, c.C478T; p.Q160*; rs80356711) associated with homozygosity for the V allele at position 129 of the protein, further highlighting how very similar genotypes in PRNP result in strikingly different phenotypes.
doi:10.1016/j.neurobiolaging.2014.05.013
PMCID: PMC4175176  PMID: 24958194
Alzheimer’s disease; Prion; PRNP; Nonsense mutation; Exome sequencing
16.  Genetic comorbidities in Parkinson’s disease 
Human molecular genetics  2013;23(3):831-841.
Parkinson’s disease (PD) has a number of known genetic risk factors. Clinical and epidemiological studies have suggested the existence of intermediate factors that may be associated with additional risk of PD. We construct genetic risk profiles for additional epidemiological and clinical factors using known genome-wide association studies (GWAS) loci related to these specific phenotypes to estimate genetic comorbidity in a systematic review. We identify genetic risk profiles based on GWAS variants associated with schizophrenia and Crohn’s disease as significantly associated with risk of PD. Conditional analyses adjusting for SNPs near loci associated with PD and schizophrenia or PD and Crohn’s disease suggest that spatially overlapping loci associated with schizophrenia and PD account for most of the shared comorbidity, while variation outside of known proximal loci shared by PD and Crohn’s disease accounts for their shared genetic comorbidity. We examine brain methylation and expression signatures proximal to schizophrenia and Crohn’s disease loci to infer functional changes in the brain associated with the variants contributing to genetic comorbidity. We compare our results with a systematic review of epidemiological literature, while the findings are dissimilar to a degree; marginal genetic associations corroborate the directionality of associations across genetic and epidemiological data. We show a strong genetically defined level of comorbidity between PD and Crohn’s disease as well as between PD and schizophrenia, with likely functional consequences of associated variants occurring in brain.
doi:10.1093/hmg/ddt465
PMCID: PMC3888265  PMID: 24057672
17.  The Glucocerobrosidase E326K Variant Predisposes to Parkinson’s Disease, But Does Not Cause Gaucher’s Disease 
Background
Heterozygous loss-of-function mutations in the acid beta-glucocerebrosidase (GBA1) gene, responsible for the recessive lysosomal storage disorder, Gaucher’s disease (GD), are the strongest known risk factor for Parkinson’s disease (PD). Our aim was to assess the contribution of GBA1 mutations in a series of early-onset PD.
Methods
One hundred and eighty-five PD patients (with an onset age of ≤50) and 283 age-matched controls were screened for GBA1 mutations by Sanger sequencing.
Results
We show that the frequency of GBA1 mutations is much higher in this patient series than in typical late-onset patient cohorts. Furthermore, our results reveal that the most prevalent PD-associated GBA1 mutation is E326K, a variant that does not, when homozygous, cause GD.
Conclusions
Our results confirm recent reports that the mutation, E326K, predisposes to PD and suggest that, in addition to reduced GBA1 activity, other molecular mechanisms may contribute to the development of the disease.
doi:10.1002/mds.25248
PMCID: PMC4208290  PMID: 23225227
GBA; E326K; Parkinson’s disease; Gaucher’s disease; early onset
18.  Genetic variability in the regulation of gene expression in ten regions of the human brain 
Nature neuroscience  2014;17(10):1418-1428.
Germ-line genetic control of gene expression occurs via expression quantitative trait loci (eQTLs). We present a large, exon-specific eQTL data set covering ten human brain regions. We found that cis-eQTL signals (within 1 Mb of their target gene) were numerous, and many acted heterogeneously among regions and exons. Co-regulation analysis of shared eQTL signals produced well-defined modules of region-specific co-regulated genes, in contrast to standard coexpression analysis of the same samples. We report cis-eQTL signals for 23.1% of catalogued genome-wide association study hits for adult-onset neurological disorders. The data set is publicly available via public data repositories and via http://www.braineac.org/. Our study increases our understanding of the regulation of gene expression in the human brain and will be of value to others pursuing functional follow-up of disease-associated variants.
doi:10.1038/nn.3801
PMCID: PMC4208299  PMID: 25174004
19.  Genomewide Association Study in Cervical Dystonia Demonstrates Possible Association With Sodium Leak Channel 
Dystonia is a common movement disorder. A number of monogenic causes have been identified. However, the majority of dystonia cases are not explained by single gene defects. Cervical dystonia is one of the commonest forms without genetic causes identified. This pilot study aimed to identify large effect-size risk loci in cervical dystonia. A genomewide association study (GWAS) was performed. British resident cervical dystonia patients of European descent were genotyped using the Illumina-610-Quad. Comparison was made with controls of European descent from the Wellcome Trust Case Control Consortium using logistic regression algorithm from PLINK. SNPs not genotyped by the array were imputed with 1000 Genomes Project data using the MaCH algorithm and minimac. Postimputation analysis was done with the mach2dat algorithm using a logistic regression model. After quality control measures, 212 cases were compared with 5173 controls. No single SNP passed the genome-wide significant level of 5 × 10−8 in the analysis of genotyped SNP in PLINK. Postimputation, there were 5 clusters of SNPs that had P value <5 × 10−6, and the best cluster of SNPs was found near exon 1 of NALCN, (sodium leak channel) with P = 9.76 × 10−7. Several potential regions were found in the GWAS and imputation analysis. The lowest P value was found in NALCN. Dysfunction of this ion channel is a plausible cause for dystonia. Further replication in another cohort is needed to confirm this finding. We make this data publicly available to encourage further analyses of this disorder.
doi:10.1002/mds.25732
PMCID: PMC4208301  PMID: 24227479
cervical dystonia; GWAS; imputation; sodium leaking channel; NALCN
20.  Time to Redefine PD? Introductory Statement of the MDS Task Force on the Definition of Parkinson’s Disease 
With advances in knowledge disease, boundaries may change. Occasionally, these changes are of such a magnitude that they require redefinition of the disease. In recognition of the profound changes in our understanding of Parkinson’s disease (PD), the International Parkinson and Movement Disorders Society (MDS) commissioned a task force to consider a redefinition of PD. This review is a discussion article, intended as the introductory statement of the task force. Several critical issues were identified that challenge current PD definitions. First, new findings challenge the central role of the classical pathologic criteria as the arbiter of diagnosis, notably genetic cases without synuclein deposition, the high prevalence of incidental Lewy body (LB) deposition, and the nonmotor prodrome of PD. It remains unclear, however, whether these challenges merit a change in the pathologic gold standard, especially considering the limitations of alternate gold standards. Second, the increasing recognition of dementia in PD challenges the distinction between diffuse LB disease and PD. Consideration might be given to removing dementia as an exclusion criterion for PD diagnosis. Third, there is increasing recognition of disease heterogeneity, suggesting that PD subtypes should be formally identified; however, current subtype classifications may not be sufficiently robust to warrant formal delineation. Fourth, the recognition of a nonmotor prodrome of PD requires that new diagnostic criteria for early-stage and prodromal PD should be created; here, essential features of these criteria are proposed. Finally, there is a need to create new MDS diagnostic criteria that take these changes in disease definition into consideration.
doi:10.1002/mds.25844
PMCID: PMC4204150  PMID: 24619848
redefinition of PD; gold standard; subtypes; disease heterogeneity; nonmotor prodrome; MDS diagnostic criteria
21.  Genetic Analysis of Inherited Leukodystrophies 
JAMA neurology  2013;70(7):875-882.
Importance
The leukodystrophies comprise a clinically and genetically heterogeneous group of progressive hereditary neurological disorders mainly affecting the myelin in the central nervous system. Their onset is variable from childhood to adulthood and presentation can be with a variety of clinical features that include mainly for adult-onset cases cognitive decline, seizures, parkinsonism, muscle weakness, neuropathy, spastic paraplegia, personality/behavioral problems, and dystonia. Recently, Rademakers and colleagues identified mutations in the CSF1R gene as the cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), offering the possibility for an in-life diagnosis. The detection of mutations in this gene in cases diagnosed with different clinical entities further demonstrated the difficulties in the clinical diagnosis of HDLS.
Objective
To better understand the genetic role of mutations in this gene, we sequenced a large cohort of adult-onset leukodystrophy cases.
Design
Whole-exome sequencing and follow up-screening by Sanger sequencing.
Setting
Collaborative study between the Institute of Neurology, University College London and the Inserm, Paris, France.
Participants
A total of 114 probands, mostly European patients, with a diagnosis of adult-onset leukodystrophy or atypical cases that could fit within a picture of leukodystrophy. These included 3 extended families within the spectrum of leukodystrophy phenotype.
Interventions
Whole-exome sequencing in a family and Sanger sequencing of CSF1R.
Main Outcomes and Measures
Mutations in CSF1R.
Results
We identified 12 probands with mutations in CSF1R. The clinical diagnoses given to these patients included dementia with spastic paraplegia, corticobasal degeneration syndrome, and stroke disorders. Our study shows that CSF1R mutations are responsible for a significant proportion of clinically and pathologically proven HDLS.
Conclusions and Relevance
These results give an indication of the frequency of CSF1R mutations in a European leukodystrophy series and expand the phenotypic spectrum of disorders that should be screened for this gene.
doi:10.1001/jamaneurol.2013.698
PMCID: PMC4204151  PMID: 23649896
23.  Parkin Disease: A Clinicopathologic Entity? 
JAMA neurology  2013;70(5):571-579.
Importance
Mutations in the gene encoding parkin (PARK2) are the most common cause of autosomal recessive juvenile-onset and young-onset parkinsonism. The few available detailed neuropathologic reports suggest that homozygous and compound heterozygous parkin mutations are characterized by severe substantia nigra pars compacta neuronal loss.
Objective
To investigate whether parkin -linked parkinsonism is a different clinicopathologic entity to Parkinson disease (PD).
Design, Setting, and Participants
We describe the clinical, genetic, and neuropathologic findings of 5 unrelated cases of parkin disease and compare them with 5 pathologically confirmed PD cases and 4 control subjects. The PD control cases and normal control subjects were matched first for age at death then disease duration (PD only) for comparison.
Results
Presenting signs in the parkin disease cases were hand or leg tremor often combined with dystonia. Mean age at onset was 34 years; all cases were compound heterozygous for mutations of parkin. Freezing of gait, postural deformity, and motor fluctuations were common late features. No patients had any evidence of cognitive impairment or dementia. Neuronal counts in the substantia nigra pars compacta revealed that neuronal loss in the parkin cases was as severe as that seen in PD, but relative preservation of the dorsal tier was seen in comparison with PD (P = .04). Mild neuronal loss was identified in the locus coeruleus and dorsal motor nucleus of the vagus, but not in the nucleus basalis of Meynert, raphe nucleus, or other brain regions. Sparse Lewy bodies were identified in 2 cases (brainstem and cortex).
Conclusions and Relevance
These findings support the notion that parkin disease is characterized by a more restricted morphologic abnormality than is found in PD, with predominantly ventral nigral degeneration and absent or rare Lewy bodies.
doi:10.1001/jamaneurol.2013.172
PMCID: PMC4202385  PMID: 23459986
24.  SQSTM1 Mutations in French Patients With Frontotemporal Dementia or Frontotemporal Dementia With Amyotrophic Lateral Sclerosis 
JAMA neurology  2013;70(11):1403-1410.
IMPORTANCE
Mutations in the SQSTM1 gene, coding for p62, are a cause of Paget disease of bone and amyotrophic lateral sclerosis (ALS). Recently, SQSTM1 mutations were confirmed in ALS, and mutations were also identified in 3 patients with frontotemporal dementia (FTD), suggesting a role for SQSTM1 in FTD.
OBJECTIVE
To evaluate the exact contribution of SQSTM1 to FTD and FTD with ALS (FTD-ALS) in an independent cohort of patients.
DESIGN
A SQSTM1 mutation was first identified in a multiplex family with FTD by use of whole-exome sequencing. To evaluate the frequency of SQSTM1 mutations, we sequenced this gene in a cohort of patients with FTD or FTD-ALS, with no mutations in known FTD and ALS genes.
SETTING
Primary care or referral center.
PARTICIPANTS
An overall cohort of 188 French patients, including 132 probands with FTD and 56 probands with FTD-ALS.
MAIN OUTCOMES AND MEASURES
Frequency of SQSTM1 mutations in patients with FTD or FTD-ALS; description of associated phenotypes.
RESULTS
We identified 4 heterozygous missense mutations in 4 unrelated families with FTD; only 1 family had clinical symptoms of Paget disease of bone, and only 1 family had clinical symptoms of FTD-ALS, possibly owing to the low penetrance of some of the clinical manifestations.
CONCLUSIONS AND RELEVANCE
Although the frequency of the mutations is low in our series (4 of 188 patients [2%]), our results, similar to those already reported, support a direct pathogenic role of p62 in different types of FTD.
doi:10.1001/jamaneurol.2013.3849
PMCID: PMC4199096  PMID: 24042580
25.  Genetic Analysis in Neurology 
JAMA neurology  2013;70(6):696-702.
In recent years, neurogenetics research had made some remarkable advances owing to the advent of genotyping arrays and next-generation sequencing. These improvements to the technology have allowed us to determine the whole-genome structure and its variation and to examine its effect on phenotype in an unprecedented manner. The identification of rare disease-causing mutations has led to the identification of new biochemical pathways and has facilitated a greater understanding of the etiology of many neurological diseases. Furthermore, genome-wide association studies have provided information on how common genetic variability impacts on the risk for the development of various complex neurological diseases. Herein, we review how these technological advances have changed the approaches being used to study the genetic basis of neurological disease and how the research findings will be translated into clinical utility.
doi:10.1001/jamaneurol.2013.2068
PMCID: PMC4196640  PMID: 23571731

Results 1-25 (201)