PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (69)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  TARDBP mutations in Parkinson’s disease 
Parkinsonism & related disorders  2012;19(3):312-315.
Mutations of the TARDBP gene encoding TDP-43 protein have been shown to cause amyotrophic lateral sclerosis and have been reported to present with clinical heterogeneity including parkinsonism. In addition, TDP-43 pathology has been observed across a spectrum of neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease. Herein we report the presence of a TDP-43 mutation in a patient with a clinical diagnosis of Parkinson’s disease. The TDP-43 p.N267S substitution has been previously implicated in both amyotrophic lateral sclerosis and behavioral variant frontotemporal dementia. Our findings widen the phenotypic presentation for the TDP-43 p.N267S substitution and support a possible role for rare TDP-43 mutations presenting with Parkinson’s disease.
doi:10.1016/j.parkreldis.2012.11.003
PMCID: PMC3582838  PMID: 23231971
TDP-43; amyotrophic lateral sclerosis; Parkinson’s disease
2.  Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia 
Brain  2013;136(2):455-470.
Four subtypes of frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions have been described (types A–D). Of these four subtypes, motor neuron disease is more commonly associated with type B pathology, but has also been reported with type A pathology. We have noted, however, the unusual occurrence of cases of type C pathology having corticospinal tract degeneration. We aimed to assess the severity of corticospinal tract degeneration in a large cohort of cases with type C (n = 31). Pathological analysis included semi-quantitation of myelin loss of fibres of the corticospinal tract and associated macrophage burden, as well as axonal loss, at the level of the medullary pyramids. We also assessed for motor cortex degeneration and fibre loss of the medial lemniscus/olivocerebellar tract. All cases were subdivided into three groups based on the degree of corticospinal tract degeneration: (i) no corticospinal tract degeneration; (ii) equivocal corticospinal tract degeneration; and (iii) moderate to very severe corticospinal tract degeneration. Clinical, genetic, pathological and imaging comparisons were performed across groups. Eight cases had no corticospinal tract degeneration, and 14 cases had equivocal to mild corticospinal tract degeneration. Nine cases, however, had moderate to very severe corticospinal tract degeneration with myelin and axonal loss. In these nine cases, there was degeneration of the motor cortex without lower motor neuron degeneration or involvement of other brainstem tracts. These cases most commonly presented as semantic dementia, and they had longer disease duration (mean: 15.3 years) compared with the other two groups (10.8 and 9.9 years; P = 0.03). After adjusting for disease duration, severity of corticospinal tract degeneration remained significantly different across groups. Only one case, without corticospinal tract degeneration, was found to have a hexanucleotide repeat expansion in the C9ORF72 gene. All three groups were associated with anterior temporal lobe atrophy on MRI; however, the cases with moderate to severe corticospinal tract degeneration showed right-sided temporal lobe asymmetry and greater involvement of the right temporal lobe and superior motor cortices than the other groups. In contrast, the cases with no or equivocal corticospinal tract degeneration were more likely to show left-sided temporal lobe asymmetry. For comparison, the corticospinal tract was assessed in 86 type A and B cases, and only two cases showed evidence of corticospinal tract degeneration without lower motor neuron degeneration. These findings confirm that there exists a unique association between frontotemporal lobar degeneration with type C pathology and corticospinal tract degeneration, with this entity showing a predilection to involve the right temporal lobe.
doi:10.1093/brain/aws324
PMCID: PMC3572926  PMID: 23358603
TDP-43 type C; corticospinal tract; MRI; semantic dementia; right temporal lobe
3.  Polysomnographic Findings in Dementia With Lewy Bodies 
The neurologist  2013;19(1):1-6.
Introduction
The clinical features of dementia with Lewy bodies (DLB) during wakefulness are well known. Other than REM sleep behavior disorder (RBD), only limited data exists on other sleep disturbances and disorders in DLB. We sought to characterize the polysomnographic (PSG) findings in a series of DLB patients with sleep-related complaints.
Methods
Retrospective study of patients with DLB who underwent clinical PSG at Mayo Clinic Rochester or Mayo Clinic Jacksonville over an almost 11 year span for evaluation of dream enactment behavior, excessive nocturnal movements, sleep apnea, hypersomnolence, or insomnia. The following variables were analyzed: respiratory disturbance index (RDI) in disordered breathing events/hour, periodic limb movement arousal index (PLMAI), arousals for no apparent reason (AFNAR), total arousal index (TAI), presence of REM sleep without atonia (RSWA), and percent sleep efficiency (SE).
Results
Data on 78 patients (71M, 7F) were analyzed. The mean age was 71 ± 8 years. Seventy-five (96%) patients had histories of recurrent dream enactment during sleep with 83% showing confirmation of RSWA +/- dream enactment during PSG. Mean RDI = 11.9 ± 5.8, PLMAI = 5.9 ± 8.5, AFNARI = 10.7 ± 12.0, and TAI = 26.6 ± 17.4. SE was <80% in 72% of the sample, <70% in 49%, and <60% in 24%. In patients who did not show evidence of significant disordered breathing (23 with RDI<5), 62% of arousals were AFNARs. In those patients who had significant disordered breathing (55 with RDI ≥ 5), 36% of arousals were AFNARs. Six patients underwent evaluations with PSG plus MSLT. Two patients had mean initial sleep latencies less than five minutes, and both had RDI<5. No patient had any sleep onset rapid eye movement periods. Nineteen patients have undergone neuropathologic examination, and 18 have had limbic- or neocortical-predominant Lewy body pathology. One had progressive supranuclear palsy, but no REM sleep was recorded in prior PSG.
Conclusions
In patients with DLB and sleep-related complaints, several sleep disturbances in addition to RBD are frequently present. In this sample, about three quarters had a significant number of arousals not accounted for by a movement or breathing disturbance, and the primary sleep disorders do not appear to entirely account for the poor sleep efficiency in DLB, especially in those without a significant breathing disorder. Further studies are warranted to better understand the relationship between disturbed sleep, arousal and DLB; such characterization may provide insights into potential avenues of treatment of symptoms which could impact quality of life.
doi:10.1097/NRL.0b013e31827c6bdd
PMCID: PMC3587292  PMID: 23269098
Sleep disorders; REM sleep behavior disorder; dementia with Lewy bodies; synucleinopathy
4.  C9ORF72 hexanucleotide repeat expansions in clinical Alzheimer’s disease 
JAMA neurology  2013;70(6):736-741.
Objective
Hexanucleotide repeat expansions in C9ORF72 underlie a significant fraction of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This study investigates the frequency of C9ORF72 repeat expansions in clinically diagnosed late-onset Alzheimer’s disease (AD).
Design, setting and patients
This case-control study genotyped the C9ORF72 repeat expansion in 872 unrelated familial AD cases and 888 controls recruited as part of the NIA-LOAD cohort, a multi-site collaboration studying 1000 families with two or more individuals clinically diagnosed with late-onset-AD.
Main Outcome Measure
We determined the presence or absence of the C9ORF72 repeat expansion by repeat-primed PCR, the length of the longest non-expanded allele, segregation of the genotype with disease, and clinical features of repeat expansion carriers.
Results
Three families showed large C9ORF72 hexanucleotide repeat expansions. Two additional families carried more than 30 repeats. Segregation with disease could be demonstrated in 3 families. One affected expansion carrier had neuropathology compatible with AD. In the NIA-LOAD series, the C9ORF72 repeat expansions constituted the second most common pathogenic mutation, just behind the PSEN1 A79V mutation, highlighting the heterogeneity of clinical presentations associated with repeat expansions.
Interpretation
C9ORF72 repeat expansions explain a small proportion of patients with a clinical presentation indistinguishable from AD, and highlight the necessity of screening “FTD genes” in clinical AD cases with strong family history.
doi:10.1001/2013.jamaneurol.537
PMCID: PMC3681841  PMID: 23588422
5.  A novel de novo pathogenic mutation in CACNA1A gene 
doi:10.1002/mds.25198
PMCID: PMC3477248  PMID: 23038654
episodic ataxia type 2; CACNA1A; p.R1346Stop; acetazolamide; cerebellar vermis
6.  Functional and genetic analysis of haplotypic sequence variation at the nicastrin genomic locus 
Neurobiology of aging  2012;33(8):1848.e1-1848.13.
Nicastrin (NCSTN) is a component of the γ-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn−/−) cells and clonal NCSTN-BAC+/Ncstn−/− cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued γ-secretase activity and amyloid beta (Aβ) production in NCSTN-BAC+/Ncstn−/− lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease.
doi:10.1016/j.neurobiolaging.2012.02.005
PMCID: PMC3683320  PMID: 22405046
Nicastrin; Haplotype variation; Functional genomics; Alzheimer's disease; γ-Secretase complex
7.  Influence of comorbidities in idiopathic normal pressure hydrocephalus — research and clinical care. A report of the ISHCSF task force on comorbidities in INPH 
Idiopathic normal pressure hydrocephalus (INPH) is a syndrome of ventriculomegaly, gait impairment, cognitive decline and incontinence that occurs in an elderly population prone to many types of comorbidities. Identification of the comorbidities is thus an important part of the clinical management of INPH patients. In 2011, a task force was appointed by the International Society for Hydrocephalus and Cerebrospinal Fluid Disorders (ISHCSF) with the objective to compile an evidence-based expert analysis of what we know and what we need to know regarding comorbidities in INPH. This article is the final report of the task force. The expert panel conducted a comprehensive review of the literature. After weighing the evidence, the various proposals were discussed and the final document was approved by all the task force members and represents a consensus of expert opinions. Recommendations regarding the following topics are given: I. Musculoskeletal conditions; II. Urinary problems; III. Vascular disease including risk factors, Binswanger disease, and white matter hyperintensities; IV. Mild cognitive impairment and Alzheimer disease including biopsies; V. Other dementias (frontotemporal dementia, Lewy body, Parkinson); VI. Psychiatric and behavioral disorders; VII. Brain imaging; VIII. How to investigate and quantify. The task force concluded that comorbidity can be an important predictor of prognosis and post-operative outcome in INPH. Reported differences in outcomes among various INPH cohorts may be partly explained by variation in the rate and types of comorbidities at different hydrocephalus centers. Identification of comorbidities should thus be a central part of the clinical management of INPH where a detailed history, physical examination, and targeted investigations are the basis for diagnosis and grading. Future INPH research should focus on the contribution of comorbidity to overall morbidity, mortality and long-term outcomes.
doi:10.1186/2045-8118-10-22
PMCID: PMC3689166  PMID: 23758953
Hydrocephalus; Normal pressure; Comorbidity; Review; Guidelines; Task force
8.  Variants in the ATP-Binding Cassette Transporter (ABCA7), Apolipoprotein E ε4, and the Risk of Late-Onset Alzheimer Disease in African Americans 
Importance
Genetic variants associated with susceptibility to late-onset Alzheimer disease are known for individuals of European ancestry, but whether the same or different variants account for the genetic risk of Alzheimer disease in African American individuals is unknown. Identification of disease-associated variants helps identify targets for genetic testing, prevention, and treatment.
Objective
To identify genetic loci associated with late-onset Alzheimer disease in African Americans.
Design, Setting, and Participants
The Alzheimer Disease Genetics Consortium (ADGC) assembled multiple data sets representing a total of 5896 African Americans (1968 case participants, 3928 control participants) 60 years or older that were collected between 1989 and 2011 at multiple sites. The association of Alzheimer disease with genotyped and imputed single-nucleotide polymorphisms (SNPs) was assessed in case-control and in family-based data sets. Results from individual data sets were combined to perform an inverse variance–weighted meta-analysis, first with genome-wide analyses and subsequently with gene-based tests for previously reported loci.
Main Outcomes and Measures
Presence of Alzheimer disease according to standardized criteria.
Results
Genome-wide significance in fully adjusted models (sex, age, APOE genotype, population stratification) was observed for a SNP in ABCA7 (rs115550680, allele = G; frequency, 0.09 cases and 0.06 controls; odds ratio [OR], 1.79 [95% CI, 1.47-2.12]; P = 2.2 × 10–9), which is in linkage disequilibrium with SNPs previously associated with Alzheimer disease in Europeans (0.8
Conclusions and Relevance
In this meta-analysis of data from African American participants, Alzheimer disease was significantly associated with variants in ABCA7 and with other genes that have been associated with Alzheimer disease in individuals of European ancestry. Replication and functional validation of this finding is needed before this information is used in clinical settings.
doi:10.1001/jama.2013.2973
PMCID: PMC3667653  PMID: 23571587
The study investigates the effects of genetic factors on the pathology of Alzheimer’s disease (AD) and Lewy body (LB) diseases, including Parkinson’s disease and dementia with Lewy bodies. A multicenter autopsy series (762 brain samples) with AD, LB or vascular pathology was examined. We assessed the effects of the tau gene (MAPT) H1 haplotype, the H1-specific SNP rs242557, APOE and the α-synuclein gene (SNCA) 3′UTR SNP rs356165 on the burden of AD and LB pathology. We counted neurofibrillary tangles (NFTs) in four brain regions, senile plaques (SPs) in five and LBs in four. We also documented Braak NFT stage, brain weight and presence of vascular pathology. MAPT H1 associated with lower counts of NFTs in the middle frontal (P<0.001) and inferior parietal (P=0.005) cortices, and also with lower counts of SPs in the motor cortex (P=0.001). Associations of MAPT H1 with increased LB counts in the middle frontal cortex (P=0.011) and inferior parietal cortex (P=0.033) were observed but were not significant after multiple testing adjustment. The APOE ε4 allele was strongly associated with overall Alzheimer type pathology (all P≤0.001). SNCA rs356165 and the MAPT H1-specific SNP rs242557 did not associate with AD or LB pathology. This study shows for the first time that MAPT H1 is associated with reduced Alzheimer type pathology, which could have important implications for the understanding of disease mechanisms and their genetic determinants.
doi:10.1136/jnnp-2011-301413
PMCID: PMC3623699  PMID: 22291217
MAPT; SNCA; APOE; Alzheimer pathology; Lewy body
Serial assessments are commonplace in neuropsychological practice and used to document cognitive trajectory for many clinical conditions. However, true change scores may be distorted by measurement error, repeated exposure to the assessment instrument, or person variables. The present study provides reliable change indices (RCI) for the Boston Naming Test, derived from a sample of 844 cognitively normal adults aged 56 years and older. All participants were retested between 9 and 24 months after their baseline exam. Results showed that a 4-point decline during a 9–15 month retest period or a 6-point decline during a 16–24 month retest period represents reliable change. These cutoff values were further characterized as a function of a person’s age and family history of dementia. These findings may help clinicians and researchers to characterize with greater precision the temporal changes in confrontation naming ability.
doi:10.1017/S1355617711001810
PMCID: PMC3617478  PMID: 22264406
BNT; RCI; Aging; Dementia; Serial; Assessment
Background/Aims
The clinical syndromes of frontotemporal lobar degeneration include behavioral variant frontotemporal dementia (bvFTD) and semantic (SV-PPA) and nonfluent variants (NF-PPA) of primary progressive aphasia. Using magnetic resonance imaging (MRI), tensor-based morphometry (TBM) was used to determine distinct patterns of atrophy between these three clinical groups.
Methods
Twenty-seven participants diagnosed with bvFTD, 16 with SV-PPA, and 19 with NF-PPA received baseline and follow-up MRI scans approximately 1 year apart. TBM was used to create three-dimensional Jacobian maps of local brain atrophy rates for individual subjects.
Results
Regional analyses were performed on the three-dimensional maps and direct comparisons between groups (corrected for multiple comparisons using permutation tests) revealed significantly greater frontal lobe and frontal white matter atrophy in the bvFTD relative to the SV-PPA group (p < 0.005). The SV-PPA subjects exhibited significantly greater atrophy than the bvFTD in the fusiform gyrus (p = 0.007). The NF-PPA group showed significantly more atrophy in the parietal lobes relative to both bvFTD and SV-PPA groups (p < 0.05). Percent volume change in ventromedial prefrontal cortex was significantly associated with baseline behavioral symptomatology.
Conclusion
The bvFTD, SV-PPA, and NF-PPA groups displayed distinct patterns of progressive atrophy over a 1-year period that correspond well to the behavioral disturbances characteristic of the clinical syndromes. More specifically, the bvFTD group showed significant white matter contraction and presence of behavioral symptoms at baseline predicted significant volume loss of the ventromedial prefrontal cortex.
doi:10.1159/000345523
PMCID: PMC3609420  PMID: 23306166
Frontotemporal dementia; Primary progressive aphasia; Longitudinal study; Magnetic resonance imaging; Tensor-based morphometry; White matter
Neurobiology of aging  2010;33(2):424.e23-424.e24.
Insertion and deletion variants (indels) within poly glycine tracts of fused in sarcoma (FUS) were initially reported as causative of disease in amyotrophic lateral sclerosis (ALS). Subsequent studies identified similar indels in controls and suggested that these indels may confer susceptibility to ALS. We aimed to elucidate the role of previously published and novel exonic indels in FUS in an extensive cohort of 630 ALS patients and 1063 controls. We detected indels in FUS exons 5, 6, 12 and 14 with similar frequencies in patients (0.95%) and controls (0.75%). Exonic indels in poly glycine tracts were also observed with similar frequencies. The largest indel (p.Gly138_Tyr143del) was observed in one control. In one patient, a 3 base pair deletion in exon 14 (p.Gly475del) was identified, however in-vitro studies did not reveal abnormal localization of p.Gly475del mutant FUS. These findings suggest that not all exonic indels in FUS cause disease.
doi:10.1016/j.neurobiolaging.2010.09.029
PMCID: PMC3130814  PMID: 21074900
Objectives
To investigate whether demographic (age and education) adjustments for the Mini-Mental State Examination (MMSE) attenuate mean score discrepancies between African American and Caucasian adults, and to determine whether demographically-adjusted MMSE scores improve the diagnostic classification accuracy of dementia in African American adults when compared to unadjusted MMSE scores.
Design
Cross-sectional study.
Setting
Community-dwelling adults participating in the Mayo Clinic Alzheimer’s Disease Patient Registry (ADPR) and Alzheimer’s Disease Research Center (ADRC).
Participants
Three thousand two hundred fifty-four adults (2819 Caucasian, 435 African American) aged 60 and older.
Measurements
MMSE at study entry.
Results
African American adults obtained significantly lower unadjusted MMSE scores (23.0 ± 7.4) compared to Caucasian adults (25.3 ± 5.4). This discrepancy persisted despite adjustment of MMSE scores for age and years of education using established regression weights or newly-derived weights. However, controlling for dementia severity at baseline and adjusting MMSE scores for age and quality of education attenuated this discrepancy. Among African American adults, an age- and education-adjusted MMSE cut score of 23/24 provided optimal dementia classification accuracy, but this represented only a modest improvement over an unadjusted MMSE cut score of 22/23. The posterior probability of dementia in African American adults is presented for various unadjusted MMSE cut scores and prevalence rates of dementia.
Conclusion
Age, dementia severity at study entry, and quality of educational experience are important explanatory factors to understand the existing discrepancies in MMSE performance between Caucasian and African American adults. Our findings support the use of unadjusted MMSE scores when screening African American elders for dementia, with an unadjusted MMSE cut score of 22/23 yielding optimal classification accuracy.
doi:10.1111/j.1532-5415.2011.03766.x
PMCID: PMC3288600  PMID: 22150301
MMSE; African American; ethnicity; dementia; cognition
Numerous kindreds with familial frontotemporal dementia or amyotrophic lateral sclerosis or both have been linked to chromosome 9 (c9FTD/ALS), and an expansion of the GGGGCC hexanucleotide repeat in the non-coding region of chromosome 9 open reading frame 72 (C9ORF72) was identified in the summer of 2011 as the pathogenic mechanism. An avalanche of papers on this disorder is in progress, and a relatively distinctive phenotype is taking form. In this review, we present an illustrative case and summarize the demographic, inheritance, clinical, and behavioral aspects and presumed pathologic underpinnings of c9FTD/ALS on the basis of the available data on more than 250 patients with frontotemporal lobar degeneration syndromes, parkinsonism, or ALS or a combination of these disorders.
doi:10.1186/alzrt132
PMCID: PMC3506943  PMID: 22817642
Acta Neuropathologica  2011;122(6):673-690.
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of a disease spectrum associated with TDP-43 pathology. Strong evidence supporting this is the existence of kindreds with family members affected by FTD, ALS or mixed features of FTD and ALS, referred to as FTD-MND. Some of these families have linkage to chromosome 9, with hexanucleotide expansion mutation in a noncoding region of C9ORF72. Discovery of the mutation defines c9FTD/ALS. Prior to discovery of mutations in C9ORF72, it was assumed that TDP-43 pathology in c9FTD/ALS was uniform. In this study, we examined the neuropathology and clinical features of 20 cases of c9FTD/ALS from a brain bank for neurodegenerative disorders. Included are six patients clinically diagnosed with ALS, eight FTD, one FTD-MND and four Alzheimer type dementia. Clinical information was unavailable for one patient. Pathologically, the cases all had TDP-43 pathology, but there were three major pathologic groups: ALS, FTLD-MND and FTLD-TDP. The ALS cases were morphologically similar to typical sporadic ALS with almost no extramotor TDP-43 pathology; all had oligodendroglial cytoplasmic inclusions. The FTLD-MND showed predominantly Mackenzie Type 3 TDP-43 pathology, and all had ALS-like pathology in motor neurons, but more extensive extramotor pathology, with oligodendroglial cytoplasmic inclusions and infrequent hippocampal sclerosis. The FTLD-TDP cases had several features similar to FTLD-TDP due to mutations in the gene for progranulin, including Mackenzie Type 1 TDP-43 pathology with neuronal intranuclear inclusions and hippocampal sclerosis. FTLD-TDP patients were older and some were thought to have Alzheimer type dementia. In addition to the FTD and ALS clinical presentations, the present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and presence of hippocampal sclerosis. Moreover, there is pathologic heterogeneity not only between ALS and FTLD, but within the FTLD group. Further studies are needed to address the molecular mechanism of clinical and pathological heterogeneity of c9FTD/ALS due to mutations in C9ORF72.
doi:10.1007/s00401-011-0907-y
PMCID: PMC3277860  PMID: 22083254
Brain  2011;134(11):3264-3275.
Patients with corticobasal degeneration can present with several different clinical syndromes, making ante-mortem diagnosis a challenge. Corticobasal syndrome is the clinical phenotype originally described for corticobasal degeneration, characterized by asymmetric rigidity and apraxia, cortical sensory deficits, dystonia and myoclonus. Some patients do not develop these features, but instead have clinical features consistent with the Richardson syndrome presentation of progressive supranuclear palsy, characterized by postural instability, early unexplained falls, vertical supranuclear gaze palsy, symmetric motor disability and dysphagia. The aim of this study was to identify differences in corticobasal degeneration presenting with corticobasal syndrome (n = 11) or Richardson syndrome (n = 15) with respect to demographic, clinical and neuropathological features. Corticobasal degeneration cases were also compared with patients with pathologically proven progressive supranuclear palsy with Richardson syndrome (n = 15). Cases with corticobasal degeneration, regardless of presentation, shared histopathological and tau biochemical characteristics, but they had differing densities of tau pathology in neuroanatomical regions that correlated with their clinical presentation. In particular, those with corticobasal syndrome had greater tau pathology in the primary motor and somatosensory cortices and putamen, while those with Richardson syndrome had greater tau pathology in limbic and hindbrain structures. Compared with progressive supranuclear palsy, patients with corticobasal degeneration and Richardson syndrome had less neuronal loss in the subthalamic nucleus, but more severe neuronal loss in the medial substantia nigra and greater atrophy of the anterior corpus callosum. Clinically, they had more cognitive impairment and frontal behavioural dysfunction. The results suggest that Richardson syndrome can be a clinicopathological presentation of corticobasal degeneration. Atrophy of anterior corpus callosum may be a potential neuroimaging marker to differentiate corticobasal degeneration from progressive supranuclear palsy in patients with Richardson syndrome.
doi:10.1093/brain/awr234
PMCID: PMC3212714  PMID: 21933807
pathology; immunocytochemistry; progressive supranuclear palsy; tau protein; corticobasal degeneration
Background
Hippocampal sclerosis (HpScl) in the elderly is often associated with neurodegeneration.
Method
We studied the clinical and pathologic features of HpScl in 205 consecutive patients with dementia who came to autopsy from 1997 to 2008, focusing on associations with TDP-43 pathology and allelic variants in the progranulin (GRN) and apolipoprotein E (APOE).
Results
Of the 205 dementia patients, 28 had HpScl (14%). TDP-43 pathology was more frequent in cases with HpScl compared to those without HpScl (89% vs. 24%). GRN rs5848 T-allele but not APOE ε4 was associated with HpScl. In cases of HpScl with TDP-43 pathology and age of onset after 75 (n=11), 8 had AD-like amnestic syndrome, but most (6/8) had pathology not consistent with AD (Braak stage III or less), including 4 with frontotemporal lobar degeneration (FTLD-TDP), 1 with diffuse Lewy body disease and 1 with “pure HpScl.”
Conclusions
HpScl is common in an elderly cohort with dementia, occurring in 14% of the cases in this series, and 89% have TDP-43 pathology, often associated with a risk variant in GRN. Patients with HpScl who present after age 75 often have presentations consistent with AD, but at autopsy have non-Alzheimer pathologies. Elderly patients with HpScl may be mistaken for AD.
doi:10.1097/WAD.0b013e31820f8f50
PMCID: PMC3107353  PMID: 21346515
Lancet neurology  2011;10(9):785-796.
Objective
Neurofibrillary pathology has a stereotypic progression in Alzheimer's disease (AD) that is encapsulated in the Braak staging scheme. Some AD cases do not fit the Braak staging scheme and are considered atypical. The purpose of this study was to compare clinical and pathological features of typical AD with atypical AD that had either hippocampal sparing (HpSp) and limbic-predominant (LP) neurofibrillary pathology.
Methods
A mathematical algorithm was devised to classify AD cases into typical, HpSp and LP according to the density and distribution of neurofibrillary tangle (NFT) counts from thioflavin S fluorescent microscopy in three cortical regions and two Hp sectors. The algorithm was applied to NFT counts of 889 cases of AD (409 men and 480 women; age at death: 37-103 years). Cases so classified were compared on clinical, demographic, pathological and genetic grounds. An independent series of 113 cases of AD were similarly evaluated to validate findings from the initial cohort.
Findings
In comparison to typical AD, HpSp (n=97) had higher NFT densities in cortical areas and lower NFT densities in hippocampus, while LP (n=127) had lower NFT densities in cortical areas and higher NFT densities in the Hp. HpSp had less Hp atrophy than typical AD (11%) and LP (14%). HpSp were younger, with a higher proportion of men, whereas LP was older, with a higher proportion of women. MAPT H1H1 genotype was more frequent in LP compared with HpSp, but not between LP and typical AD. APOE ε4 allele status differed among AD subtypes only when age of onset was considered. Clinical presentation, age of onset, disease duration, and rate of decline differed among the AD subtypes. The findings were confirmed in a replication cohort.
Interpretation
Our data supports the hypothesis of distinct clinicopathologic subtypes of AD. HpSp and LP AD account for about 25% of AD and are important to consider in clinical, genetic, biomarker and treatment studies.
doi:10.1016/S1474-4422(11)70156-9
PMCID: PMC3175379  PMID: 21802369
Alzheimer disease; APOE; digital microscopy; hippocampus; MAPT; neurofibrillary tangles; thioflavin S fluorescent microscopy
Alzheimer disease (AD) and frontotemporal dementia (FTD) are two frequent forms of primary neurodegenerative dementias with overlapping clinical symptoms. Pathogenic mutations of the amyloid precursor protein (APP) and presenilins 1 and 2 (PSEN1, PSEN2) genes have been linked to familial early-onset forms of AD; however, more recently mutations in the common FTD genes encoding the microtubule associated protein tau (MAPT), progranulin (GRN) and C9ORF72, have also been reported in clinically diagnosed AD patients. To access the contribution of mutations in a well-characterized series of patients, we systematically performed genetic analyses of these EOAD and FTD genes in a novel cohort of 227 unrelated probands clinically diagnosed as probable AD which were ascertained at Mayo Clinic Florida between 1997 and 2011. All patients showed first symptoms of dementia before 70 years. We identified 9 different pathogenic mutations in the EOAD genes in a total of 11 patients explaining 4.8% of the patient population. Two mutations were novel: PSEN1 p.Pro218Leu and PSEN2 p.Phe183Ser. Importantly, mutations were also identified in all FTD genes: one patient carried a MAPT p.R406W mutation, one patient carried the p.Arg198Glyfs19X loss-of-function mutation in GRN and two patients were found to carry expanded GGGGCC repeats in the non-coding region of C9ORF72. Together the FTD genes explained the disease in 1.8% of our probable AD population. The identification of mutations in all major FTD genes in this novel cohort of clinically diagnosed AD patients underlines the challenges associated with the differential diagnosis of AD and FTD resulting from overlapping symptomatology and has important implications for molecular diagnostic testing and genetic counseling of clinically diagnosed AD patients. Our findings suggest that in clinically diagnosed AD patients, genetic analyses should include not only the well-established EOAD genes APP, PSEN1 and PSEN2 but also genes that are usually associated with FTD. Finally, the overall low frequency of mutation carriers observed in our study (6.6%) suggests the involvement of other as yet unknown genetic factors associated with AD.
PMCID: PMC3560455  PMID: 23383383
Alzheimer’s disease; frontotemporal dementia; amyloid precursor protein; presenilin 1; presenilin 2; progranulin; microtubule associated protein tau; C9ORF72; mutation; diagnosis.
Sleep medicine  2011;12(5):445-453.
Objective
To validate a questionnaire focused on REM sleep behavior disorder (RBD) among participants in an aging and dementia cohort.
Background
RBD is a parasomnia that can develop in otherwise neurologically-normal adults as well as in those with a neurodegenerative disease. Confirmation of RBD requires polysomnography (PSG). A simple screening measure for RBD would be desirable for clinical and research purposes.
Methods
We had previously developed the Mayo Sleep Questionnaire (MSQ), a 16 item measure, to screen for the presence of RBD and other sleep disorders. We assessed the validity of the MSQ by comparing the responses of patients’ bed partners with the findings on PSG. All subjects recruited in the Mayo Alzheimer’s Disease Research Center at Mayo Clinic Rochester and Mayo Clinic Jacksonville from 1/00 to 7/08 who had also undergone a PSG were the focus of this analysis.
Results
The study sample was comprised of 176 subjects [150 male; median age 71 years (range 39–90)], with the following clinical diagnoses: normal (n=8), mild cognitive impairment (n=44), Alzheimer’s disease (n=23), dementia with Lewy bodies (n=74), as well as other dementia and/or parkinsonian syndromes (n=27). The core question on recurrent dream enactment behavior yielded a sensitivity (SN) of 98% and specificity (SP) of 74% for the diagnosis of RBD. The profile of responses on four additional subquestions on RBD and one on obstructive sleep apnea improved specificity.
Conclusions
These data suggest that among aged subjects with cognitive impairment and/or parkinsonism, the MSQ has adequate SN and SP for the diagnosis of RBD. The utility of this scale in other patient populations will require further study.
doi:10.1016/j.sleep.2010.12.009
PMCID: PMC3083495  PMID: 21349763
sleep disorders; parasomnias; dementia; Alzheimer’s disease; dementia with Lewy bodies; parkinsonism
Neurobiology of aging  2010;32(3):557.e1-557.e9.
KIBRA SNP rs17070145 was identified in a GWAS of memory performance, with some but not all follow-up studies confirming association of its T allele with enhanced memory. This allele was associated with reduced Alzheimer's disease (AD) risk in one study, which also found overexpression of KIBRA in memory-related brain regions of ADs. We genotyped rs17070145 and 14 additional SNPs in 2571 LOADs vs. 2842 controls, including African-Americans. We found significantly reduced risk for rs17070145 T allele in the older African-American subjects (p=0.007) and a suggestive effect in the older Caucasian series. Meta-analysis of this allele in >8000 subjects from our and published series showed a suggestive protective effect (p=0.07). Analysis of episodic memory in control subjects did not identify associations with rs17070145, though other SNPs showed significant associations in one series. KIBRA showed evidence of overexpression in the AD temporal cortex (p=0.06) but not cerebellum. These results suggest a modest role for KIBRA as a cognition and AD risk gene, and also highlight the multifactorial complexity of its genetic associations.
doi:10.1016/j.neurobiolaging.2010.11.004
PMCID: PMC3065956  PMID: 21185624
Alzheimer's disease; Association studies in genetics; Case control studies
Mayo Clinic Proceedings  2011;86(9):876-884.
A rapidly growing literature strongly suggests that exercise, specifically aerobic exercise, may attenuate cognitive impairment and reduce dementia risk. We used PubMed (keywords exercise and cognition) and manuscript bibliographies to examine the published evidence of a cognitive neuroprotective effect of exercise. Meta-analyses of prospective studies documented a significantly reduced risk of dementia associated with midlife exercise; similarly, midlife exercise significantly reduced later risks of mild cognitive impairment in several studies. Among patients with dementia or mild cognitive impairment, randomized controlled trials (RCTs) documented better cognitive scores after 6 to 12 months of exercise compared with sedentary controls. Meta-analyses of RCTs of aerobic exercise in healthy adults were also associated with significantly improved cognitive scores. One year of aerobic exercise in a large RCT of seniors was associated with significantly larger hippocampal volumes and better spatial memory; other RCTs in seniors documented attenuation of age-related gray matter volume loss with aerobic exercise. Cross-sectional studies similarly reported significantly larger hippocampal or gray matter volumes among physically fit seniors compared with unfit seniors. Brain cognitive networks studied with functional magnetic resonance imaging display improved connectivity after 6 to 12 months of exercise. Animal studies indicate that exercise facilitates neuroplasticity via a variety of biomechanisms, with improved learning outcomes. Induction of brain neurotrophic factors by exercise has been confirmed in multiple animal studies, with indirect evidence for this process in humans. Besides a brain neuroprotective effect, physical exercise may also attenuate cognitive decline via mitigation of cerebrovascular risk, including the contribution of small vessel disease to dementia. Exercise should not be overlooked as an important therapeutic strategy.
doi:10.4065/mcp.2011.0252
PMCID: PMC3258000  PMID: 21878600
Brain  2012;135(3):765-783.
Numerous kindreds with familial frontotemporal dementia and/or amyotrophic lateral sclerosis have been linked to chromosome 9, and an expansion of the GGGGCC hexanucleotide repeat in the non-coding region of chromosome 9 open reading frame 72 has recently been identified as the pathogenic mechanism. We describe the key characteristics in the probands and their affected relatives who have been evaluated at Mayo Clinic Rochester or Mayo Clinic Florida in whom the hexanucleotide repeat expansion were found. Forty-three probands and 10 of their affected relatives with DNA available (total 53 subjects) were shown to carry the hexanucleotide repeat expansion. Thirty-six (84%) of the 43 probands had a familial disorder, whereas seven (16%) appeared to be sporadic. Among examined subjects from the 43 families (n = 63), the age of onset ranged from 33 to 72 years (median 52 years) and survival ranged from 1 to 17 years, with the age of onset <40 years in six (10%) and >60 in 19 (30%). Clinical diagnoses among examined subjects included behavioural variant frontotemporal dementia with or without parkinsonism (n = 30), amyotrophic lateral sclerosis (n = 18), frontotemporal dementia/amyotrophic lateral sclerosis with or without parkinsonism (n = 12), and other various syndromes (n = 3). Parkinsonism was present in 35% of examined subjects, all of whom had behavioural variant frontotemporal dementia or frontotemporal dementia/amyotrophic lateral sclerosis as the dominant clinical phenotype. No subject with a diagnosis of primary progressive aphasia was identified with this mutation. Incomplete penetrance was suggested in two kindreds, and the youngest generation had significantly earlier age of onset (>10 years) compared with the next oldest generation in 11 kindreds. Neuropsychological testing showed a profile of slowed processing speed, complex attention/executive dysfunction, and impairment in rapid word retrieval. Neuroimaging studies showed bilateral frontal abnormalities most consistently, with more variable degrees of parietal with or without temporal changes; no case had strikingly focal or asymmetric findings. Neuropathological examination of 14 patients revealed a range of transactive response DNA binding protein molecular weight 43 pathology (10 type A and four type B), as well as ubiquitin-positive cerebellar granular neuron inclusions in all but one case. Motor neuron degeneration was detected in nine patients, including five patients without ante-mortem signs of motor neuron disease. While variability exists, most cases with this mutation have a characteristic spectrum of demographic, clinical, neuropsychological, neuroimaging and especially neuropathological findings.
doi:10.1093/brain/aws004
PMCID: PMC3286335  PMID: 22366793
frontotemporal dementia; amyotrophic lateral sclerosis; motor neuron disease; TDP-43; neurogenetics; chromosome 9
Neuropsychologia  2010;48(12):3634-3641.
Frontotemporal lobar degeneration (FTLD) often presents with asymmetric atrophy. We assessed whether premorbid occupations in FTLD patients were associated with these hemispheric asymmetries. In a multi-center chart review of 588 patients, occupation information was related to location of tissue loss or dysfunction. Patients with atrophy lateralized to the right had professions more dependent on verbal abilities than patients with left-lateralized or symmetrical atrophy. In a subgroup of 96 well-characterized patients with quantified neuroimaging data, the lateralization effect was localized to the temporal lobes and included verbal and mathematical ability. Patients whose professions placed high demands on language and mathematics had relatively preserved left temporal relative to right temporal volumes. Thus, occupation selection occurring in early adulthood is related to lateralized brain asymmetry in patients who develop FTLD decades later in the relatively deficient hemisphere. The finding suggests that verbal and mathematical occupations may have been pursued due to developmental right-lateralized functional impairment that precedes the neurodegenerative process. Alternatively, long-term engagement of activities associated with these occupations contributed to left-lateralized reserve, right-lateralized dysfunction, or both.
doi:10.1016/j.neuropsychologia.2010.08.020
PMCID: PMC2957479  PMID: 20800604
Frontotemporal dementia; laterality; reserve

Results 1-25 (69)