PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Deep sequencing of the LRRK2 gene in 14,002 individuals reveals evidence of purifying selection and independent origin of the p.Arg1628Pro mutation in Europe 
Human Mutation  2012;33(7):1087-1098.
Genetic variation in LRRK2 predisposes to Parkinson disease (PD), which underpins its development as a therapeutic target. Here, we aimed to identify novel genotype-phenotype associations that might support developing LRRK2 therapies for other conditions. We sequenced the 51 exons of LRRK2 in cases comprising 12 common diseases (n = 9,582), and in 4,420 population controls. We identified 739 single nucleotide variants (SNVs), 62% of which were observed in only one person, including 316 novel exonic variants. We found evidence of purifying selection for the LRRK2 gene and a trend suggesting that this is more pronounced in the central (ROC-COR-kinase) core protein domains of LRRK2 than the flanking domains. Population genetic analyses revealed that LRRK2 is not especially polymorphic or differentiated in comparison to 201 other drug target genes. Amongst Europeans, we identified 17 carriers (0.13%) of pathogenic LRRK2 mutations that were not significantly enriched within any disease or in those reporting a family history of PD. Analysis of pathogenic mutations within Europe reveals that the p.Arg1628Pro (c4883G>C) mutation arose independently in Europe and Asia. Taken together, these findings demonstrate how targeted deep sequencing can help to reveal fundamental characteristics of clinically important loci.
doi:10.1002/humu.22075
PMCID: PMC3370131  PMID: 22415848
LRRK2; Deep sequencing; novel variants; evolution; population genetics; genotype-phenotype associations
2.  Deep Resequencing Unveils Genetic Architecture of ADIPOQ and Identifies a Novel Low-Frequency Variant Strongly Associated With Adiponectin Variation 
Diabetes  2012;61(5):1297-1301.
Increased adiponectin levels have been shown to be associated with a lower risk of type 2 diabetes. To understand the relations between genetic variation at the adiponectin-encoding gene, ADIPOQ, and adiponectin levels, and subsequently its role in disease, we conducted a deep resequencing experiment of ADIPOQ in 14,002 subjects, including 12,514 Europeans, 594 African Americans, and 567 Indian Asians. We identified 296 single nucleotide polymorphisms (SNPs), including 30 amino acid changes, and carried out association analyses in a subset of 3,665 subjects from two independent studies. We confirmed multiple genome-wide association study findings and identified a novel association between a low-frequency SNP (rs17366653) and adiponectin levels (P = 2.2E–17). We show that seven SNPs exert independent effects on adiponectin levels. Together, they explained 6% of adiponectin variation in our samples. We subsequently assessed association between these SNPs and type 2 diabetes in the Genetics of Diabetes Audit and Research in Tayside Scotland (GO-DARTS) study, comprised of 5,145 case and 6,374 control subjects. No evidence of association with type 2 diabetes was found, but we were also unable to exclude the possibility of substantial effects (e.g., odds ratio 95% CI for rs7366653 [0.91–1.58]). Further investigation by large-scale and well-powered Mendelian randomization studies is warranted.
doi:10.2337/db11-0985
PMCID: PMC3331741  PMID: 22403302
4.  Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families 
PLoS ONE  2012;7(2):e31039.
Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09×10−5; OR = 2.21; 95%CI = 1.49–3.28) or an unselected population of 12,481 samples (p = 6.82×10−5; OR = 2.19; 95%CI = 1.347–3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.
doi:10.1371/journal.pone.0031039
PMCID: PMC3270040  PMID: 22312439

Results 1-4 (4)