Search tips
Search criteria

Results 1-25 (32)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Associations of repeat sizes with clinical and pathological characteristics in C9ORF72 expansion carriers (Xpansize-72): a cross-sectional cohort study 
Lancet neurology  2013;12(10):10.1016/S1474-4422(13)70210-2.
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are currently the major genetic cause of frontotemporal dementia (FTD) and motor neuron disease (MND). Presently, it is unknown whether expansion size affects disease severity or phenotypes.
We performed a cross-sectional Southern blot characterization study (Xpansize-72) in a cohort of subjects obtained at the Mayo Clinic and Banner Sun Health Research Institute. All subjects carried GGGGCC repeat expansions in C9ORF72, and high quality DNA was available from the frontal cortex, cerebellum and/or blood. Southern blotting techniques and densitometry were employed to estimate the repeat size of the most abundant expansion species. Comparisons of repeat sizes between tissues were made using Wilcoxon rank sum and Wilcoxon signed rank tests, and between disease subgroups using Kruskal-Wallis rank sum tests. The association of repeat size with age at onset and age at collection was evaluated using a Spearman’s test of correlation; whereas the association between repeat size and survival after disease onset was examined using Cox proportional hazards regression models.
Our cohort consisted of 84 C9ORF72 expansion carriers, including FTD patients (n=35), FTD/MND patients (n=16), MND patients (n=30), and unaffected subjects (n=3). We focused our analysis on three major tissue subgroups: frontal cortex (41 subjects [21 FTD, 11 FTD/MND, 9 MND]), cerebellum (40 subjects [20 FTD, 12 FTD/MND, 8 MND]), and blood (50 subjects [15 FTD, 9 FTD/MND, 23 MND, 3 unaffected expansion carriers]). Repeat lengths in the cerebellum were significantly smaller (median 12·3 kb [~1667 repeat units], IQR 11·1–14·3) than in the frontal cortex (median 33·8 kb [~5250 repeat units], IQR 23·5–44·9, p<0·0001), or in blood (median 18·6 kb [~2717 repeat units], IQR 13·9–28·1, p=0·0002). Within these tissues, there was no significant difference in repeat length between disease subgroups (cerebellum p=0·96, frontal cortex p=0·27, blood p=0·10). In the frontal cortex of FTD patients, repeat length correlated with age at onset (r=0·63, p=0·003) and age at collection (r=0·58, p=0·006); this correlation was not detected in the cerebellum or blood. Finally, only in the cerebellum, survival after disease onset was poorer in patients from our overall cohort with repeat lengths greater than 1467 repeat units (25th percentile, HR 3·27, 95% CI 1·34–7·95, p=0·009): the median survival was 4·8 years (IQR 3·0–7·4) in the group with longer expansions versus 7·4 years (IQR 6·3–10·9) in the group with smaller expansions.
Substantial variation in repeat size is observed between cerebellum, frontal cortex, and blood; relatively long repeat sizes in the cerebellum confer an important survival disadvantage. Our findings indicate that expansion size does affect disease severity, which could be relevant for genetic counseling.
PMCID: PMC3879782  PMID: 24011653
2.  Progressive Amnestic Dementia, Hippocampal Sclerosis, and Mutation in C9ORF72 
Acta neuropathologica  2013;126(4):545-554.
The most common cause of familial frontotemporal lobar degeneration with TAR DNA-binding protein-43 pathology (FTLD-TDP) has been found to be an expansion of a hexanucleotide repeat (GGGGCC) in a noncoding region of the gene C9ORF72. Hippocampal sclerosis (HpScl) is a common finding in FTLD-TDP. Our objective was to screen for the presence of C9ORF72 hexanucleotide repeat expansions in a pathologically-confirmed cohort of “pure” hippocampal sclerosis cases (n=33), outside the setting of FTLD-TDP and Alzheimer’s disease (AD). Using a recently described repeat-associated non-ATG (RAN) translation (C9RANT) antibody that was found to be highly specific for c9FTD/ALS, we identified a single “pure” HpScl autopsy case with a repeat expansion in C9ORF72 (c9HpScl). Mutation screening was also performed with repeat-primed polymerase chain reaction and further confirmed with southern blotting. The c9HpScl patient had a 14-year history of a slowly progressive amnestic syndrome and a clinical diagnosis of probable AD. Neuropsychological testing revealed memory impairment, but no deficits in other cognitive domains. Autopsy showed hippocampal sclerosis with TDP-43 immunoreactive neuronal inclusions relatively limited to limbic lobe structures. Neuritic pathology immunoreactive for p62 was more frequent than TDP-43 in amygdala and hippocampus. Frequent p62 positive neuronal inclusions were present in cerebellar granule neurons as is typical of C9ORF72 mutation carriers. There was no significant FTLD or motor neuron disease. C9RANT was found to be sensitive and specific in this autopsy-confirmed series of HpScl cases. The findings in this patient suggest that the clinical and pathologic spectrum of C9ORF72 repeat expansion is wider than frontotemporal dementia and motor neuron disease, including cases of progressive amnestic dementia with restricted TDP-43 pathology associated with HpScl.
PMCID: PMC3926101  PMID: 23922030
Hippocampus; C9ORF72; memory; neuropathology; frontotemporal lobar degeneration; C9RANT
3.  Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene 
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are causative for frontotemporal dementia (FTD) and motor neuron disease (MND). Substantial phenotypic heterogeneity has been described in patients with these expansions. We set out to identify genetic modifiers of disease risk, age at onset, and survival after onset that may contribute to this clinical variability.
We examined a cohort of 330 C9ORF72 expansion carriers and 374 controls. In these individuals, we assessed variants previously implicated in FTD and/or MND; 36 variants were included in our analysis. After adjustment for multiple testing, our analysis revealed three variants significantly associated with age at onset (rs7018487 [UBAP1; p-value = 0.003], rs6052771 [PRNP; p-value = 0.003], and rs7403881 [MT-Ie; p-value = 0.003]), and six variants significantly associated with survival after onset (rs5848 [GRN; p-value = 0.001], rs7403881 [MT-Ie; p-value = 0.001], rs13268953 [ELP3; p-value = 0.003], the epsilon 4 allele [APOE; p-value = 0.004], rs12608932 [UNC13A; p-value = 0.003], and rs1800435 [ALAD; p-value = 0.003]).
Variants identified through this study were previously reported to be involved in FTD and/or MND, but we are the first to describe their effects as potential disease modifiers in the presence of a clear pathogenic mutation (i.e. C9ORF72 repeat expansion). Although validation of our findings is necessary, these variants highlight the importance of protein degradation, antioxidant defense and RNA-processing pathways, and additionally, they are promising targets for the development of therapeutic strategies and prognostic tests.
Electronic supplementary material
The online version of this article (doi:10.1186/1750-1326-9-38) contains supplementary material, which is available to authorized users.
PMCID: PMC4190282  PMID: 25239657
C9ORF72; Frontotemporal dementia; Motor neuron disease; Genetic modifier; Repeat expansion
4.  C9ORF72 repeat expansions in cases with previously identified pathogenic mutations 
Neurology  2013;81(15):1332-1341.
To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases.
A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology.
We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations.
Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members.
PMCID: PMC3806926  PMID: 24027057
5.  Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS 
Neuron  2013;77(4):639-646.
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. Hexanucleotide (GGGGCC) repeat expansions in a non-coding region of C9ORF72 are the major genetic cause of FTD and ALS (c9FTD/ALS). The RNA structure of GGGGCC repeats renders these transcripts susceptible to an unconventional mechanism of translation – repeat-associated non-ATG (RAN) translation. Antibodies generated against putative GGGGCC repeat RAN translated peptides (anti-C9RANT) detected high molecular weight, insoluble material in brain homogenates, and neuronal inclusions throughout the central nervous system of c9FTD/ALS cases. C9RANT immunoreactivity was not found in other neurodegenerative diseases, including CAG repeat disorders, or in peripheral tissues of c9FTD/ALS. The specificity of C9RANT for c9FTD/ALS is a potential biomarker for this most common cause of FTD and ALS. These findings have significant implications for treatment strategies directed at RAN translated peptides and their aggregation, and the RNA structures necessary for their production.
PMCID: PMC3593233  PMID: 23415312
6.  How do C9ORF72 repeat expansions cause ALS and FTD: can we learn from other non-coding repeat expansion disorders? 
Current opinion in neurology  2012;25(6):689-700.
Purpose of review
The aim of this review is to describe disease mechanisms by which chromosome 9 open reading frame 72 (C9ORF72) repeat expansions could lead to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), and to discuss these diseases in relation to other non-coding repeat expansion disorders.
Recent findings
ALS and FTD are complex neurodegenerative disorders with a considerable clinical and pathological overlap, and this overlap is further substantiated by the recent discovery of C9ORF72 repeat expansions. These repeat expansions are currently the most important genetic cause of familial ALS and FTD, accounting for approximately 34.2% and 25.9% of the cases. Clinical phenotypes associated with these repeat expansions are highly variable, and combinations with mutations in other ALS- and/or FTD-associated genes may contribute to this pleiotropy. It is challenging, however, to diagnose patients with C9ORF72 expansions, not only because of large repeat sizes, but also due to somatic heterogeneity. Most other non-coding repeat expansion disorders share an RNA gain-of-function disease mechanism, a mechanism that could underlie the development of ALS and/or FTD as well.
The discovery of C9ORF72 repeat expansions provides novel insights into the pathogenesis of ALS and FTD, and highlights the importance of non-coding repeat expansions and RNA toxicity in neurodegenerative diseases.
PMCID: PMC3923493  PMID: 23160421
Amyotrophic lateral sclerosis; frontotemporal dementia; non-coding repeat expansion disorders; C9ORF72; genetics
7.  Tau Pathology in Frontotemporal Lobar Degeneration with C9ORF72 Hexanucleotide Repeat Expansion 
Acta neuropathologica  2012;125(2):289-302.
An expanded GGGGCC hexanucleotide repeat in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration associated with TDP-43 pathology (FTLD-TDP). In addition to TDP-43-positive neuronal and glial inclusions, C9ORF72-linked FTLD-TDP has characteristic TDP-43-negative neuronal cytoplasmic and intranuclear inclusions as well as dystrophic neurites in the hippocampus and cerebellum. These lesions are immunopositive for ubiquitin and ubiquitin-binding proteins, such as sequestosome-1/p62 and ubiquilin-2. Studies examining the frequency of the C9ORF72 mutation in clinically probable Alzheimer’s disease (AD) have found a small proportion of AD cases with the mutation. This prompted us to systematically explore the frequency of Alzheimer type pathology in a series of 17 FTLD-TDP cases with mutations in C9ORF72 (FTLD-C9ORF72). We identified 4 cases with sufficient Alzheimer type pathology to meet criteria for intermediate-to-high likelihood AD. We compared AD pathology in the 17 FTLD-C9ORF72 to 13 cases of FTLD-TDP linked to mutations in the gene for progranulin (FTLD-GRN) and 36 cases of sporadic FTLD (sFTLD). FTLD-C9ORF72 cases had higher Braak neurofibrillary tangle stage than FTLD-GRN. Increased tau pathology in FTLD-C9ORF72 was assessed with thioflavin-S fluorescent microscopy-based neurofibrillary tangle counts and with image analysis of tau burden in temporal cortex and hippocampus. FTLD-C9ORF72 had significantly more neurofibrillary tangles and higher tau burden compared with FTLD-GRN. The differences were most marked in limbic regions. On the other hand, sFTLD and FTLD-C9ORF72 had a similar burden of tau pathology. These results suggest FTLD-C9ORF72 has increased propensity for tau pathology compared to FTLD-GRN, but not sFTLD. The accumulation of tau as well as lesions immunoreactive for ubiquitin and ubiquitin binding proteins (p62 and ubiquilin-2) suggests that mutations in C9ORF72 may involve disrupted protein degradation that favors accumulation of multiple different proteins.
PMCID: PMC3551994  PMID: 23053135
frontotemporal lobar degeneration; C9ORF72; ubiquitin; p62; ubiquilin-2; tau
8.  Analysis of the C9orf72 repeat in Parkinson’s disease, essential tremor and restless legs syndrome 
Parkinsonism & related disorders  2012;19(2):198-201.
The hexanucleotide expanded repeat (GGGGCC) in intron 1 of the C9orf72 gene is recognized as the most common genetic form of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, as part of the clinical phenotype, some patients present with parkinsonism. The present study investigated the potential expansion or association of the C9orf72 repeat length with susceptibility to Parkinson’s disease and related disorders, essential tremor and restless legs syndrome. One restless legs syndrome patient was shown to harbor a repeat expansion, however on clinical follow-up this patient was observed to have developed frontotemporal dementia. There was no evidence of association of repeat length on disease risk or age-at-onset for any of the three disorders. Therefore the C9orf72 hexanucleotide repeat expansion appears to be specific to TDP-43 driven amyotrophic lateral sclerosis and dementia.
PMCID: PMC3570692  PMID: 23084342
C9orf72; expanded repeat; PD; ET; RLS; genetic association
9.  Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype 
Neurobiology of aging  2012;33(12):2950.e5-2950.e7.
Expansions of the non-coding GGGGCC hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene were recently identified as the long sought-after cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) on chromosome 9p. In this study we aimed to determine whether the length of the normal - unexpanded - allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS and 160 FTD-ALS patients and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions and an accurate quantification of the length of the normal alleles in all patients and controls. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or non-mutation carriers.
PMCID: PMC3617405  PMID: 22840558
Amyotrophic lateral sclerosis; Frontotemporal Dementia; C9ORF72; Repeat-expansion disease; Association study
10.  Frontotemporal dementia due to C9ORF72 mutations 
Neurology  2012;79(10):1002-1011.
To describe the phenotype of patients with C9FTD/ALS (C9ORF72) hexanucleotide repeat expansion.
A total of 648 patients with frontotemporal dementia (FTD)–related clinical diagnoses and Alzheimer disease (AD) dementia were tested for C9ORF72 expansion and 31 carried expanded repeats (C9+). Clinical and neuroimaging data were compared between C9+ (15 behavioral variant FTD [bvFTD], 11 FTD–motor neuron disease [MND], 5 amyotrophic lateral sclerosis [ALS]) and sporadic noncarriers (48 bvFTD, 19 FTD-MND, 6 ALS).
All C9+ patients displayed clinical syndromes of bvFTD, ALS, or FTD-MND. At first evaluation, C9+ bvFTD patients had more delusions and greater impairment of working memory, but milder eating dysregulation compared to bvFTD noncarriers. C9+FTD-MND patients had a trend for longer survival and had an earlier age at onset than FTD-MND noncarriers. Voxel-based morphometry demonstrated more thalamic atrophy in FTD and FTD-MND carriers than in noncarriers.
Patients with the C9ORF72 hexanucleotide repeat expansion develop bvFTD, ALS, or FTD-MND with similar clinical and imaging features to sporadic cases. Other FTD spectrum diagnoses and AD dementia appear rare or absent among C9+ individuals. Longer survival in C9+ FTD-MND suggests slower disease progression and thalamic atrophy represents a novel and unexpected feature.
PMCID: PMC3430713  PMID: 22875087
11.  Frontotemporal dementia in a Brazilian Caucasian kindred with the C9orf72 mutation 
Archives of neurology  2012;69(9):1149-1153.
Describe the clinical features of a Brazilian C9orf72 frontotemporal dementia – amyotrophic lateral sclerosis (FTD-ALS) kindred, and compare them to other reported C9orf72 families and FTD-ALS causing mutations.
Report of a kindred.
Dementia center at an University hospital.
One kindred encompassing 3 generations.
The presence of a hexanucleotide (GGGGCC) expansion in C9orf72 was confirmed by repeat-primed PCR and Southern blot. The observed phenotypes were behavioral variant FTD and ALS with dementia, with significant variability in age of onset and duration of disease. Parkinsonian features with focal dystonia, visual hallucinations and more posterior atrophy on neuroimaging than is typical for FTD were seen.
bvFTD due to C9orf72 expansions displays some phenotypic heterogeneity, and may be associated with hallucinations, parkinsonism, focal dystonia, and posterior brain atrophy. Personality changes may precede by many years the diagnosis of dementia and may be a distinguishing feature of this mutation.
PMCID: PMC3625641  PMID: 22964910
13.  Characterization of a Family With c9FTD/ALS Associated With the GGGGCC Repeat Expansion in C9ORF72 
Archives of neurology  2012;69(9):1164-1169.
The hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene was recently discovered as the pathogenic mechanism underlying many families with frontotemporal dementia (FTD) and/or amyotrophic lateral sclerosis (ALS) linked to chromosome 9 (c9FTD/ALS). We report the clinical, neuropsychological, and neuroimaging findings of a family with the C9ORF72 mutation and clinical diagnoses bridging the FTD, parkinsonism and ALS spectrum.
To characterize the antemortem characteristics of a family with c9FTD/ALS associated with the GGGGCC repeat expansion in C9ORF72
Clinical series.
Tertiary care academic medical center.
The members of the family affected by the mutation with features of FTD and/or ALS.
Main Outcome Measures
Clinical, neuropsychological, and neuroimaging assessments.
All three examined subjects had the hexanucleotide expansion detected in C9ORF72. All had personality/behavioral changes early in the course of the disease. One case had levodopa-unresponsive parkinsonism, and one had ALS. MRI showed symmetric bilateral frontal, temporal, insular and cingulate atrophy.
This report highlights the clinical and neuroimaging characteristics of a family with c9FTD/ALS. Further studies are needed to better understand the phenotypical variability and the clinico-neuroimaging-neuropathologic correlations.
PMCID: PMC3625860  PMID: 22637471
15.  Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p 
Brain  2012;135(3):709-722.
Frontotemporal dementia and amyotrophic lateral sclerosis are closely related clinical syndromes with overlapping molecular pathogenesis. Several families have been reported with members affected by frontotemporal dementia, amyotrophic lateral sclerosis or both, which show genetic linkage to a region on chromosome 9p21. Recently, two studies identified the FTD/ALS gene defect on chromosome 9p as an expanded GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72). In the present study, we provide detailed analysis of the clinical features and neuropathology for 16 unrelated families with frontotemporal dementia caused by the C9ORF72 mutation. All had an autosomal dominant pattern of inheritance. Eight families had a combination of frontotemporal dementia and amyotrophic lateral sclerosis while the other eight had a pure frontotemporal dementia phenotype. Clinical information was available for 30 affected members of the 16 families. There was wide variation in age of onset (mean = 54.3, range = 34–74 years) and disease duration (mean = 5.3, range = 1–16 years). Early diagnoses included behavioural variant frontotemporal dementia (n = 15), progressive non-fluent aphasia (n = 5), amyotrophic lateral sclerosis (n = 9) and progressive non-fluent aphasia–amyotrophic lateral sclerosis (n = 1). Heterogeneity in clinical presentation was also common within families. However, there was a tendency for the phenotypes to converge with disease progression; seven subjects had final clinical diagnoses of both frontotemporal dementia and amyotrophic lateral sclerosis and all of those with an initial progressive non-fluent aphasia diagnosis subsequently developed significant behavioural abnormalities. Twenty-one affected family members came to autopsy and all were found to have transactive response DNA binding protein with Mr 43 kD (TDP-43) pathology in a wide neuroanatomical distribution. All had involvement of the extramotor neocortex and hippocampus (frontotemporal lobar degeneration-TDP) and all but one case (clinically pure frontotemporal dementia) had involvement of lower motor neurons, characteristic of amyotrophic lateral sclerosis. In addition, a consistent and relatively specific pathological finding was the presence of neuronal inclusions in the cerebellar cortex that were ubiquitin/p62-positive but TDP-43-negative. Our findings indicate that the C9ORF72 mutation is a major cause of familial frontotemporal dementia with TDP-43 pathology, that likely accounts for the majority of families with combined frontotemporal dementia/amyotrophic lateral sclerosis presentation, and further support the concept that frontotemporal dementia and amyotrophic lateral sclerosis represent a clinicopathological spectrum of disease with overlapping molecular pathogenesis.
PMCID: PMC3286328  PMID: 22344582
frontotemporal dementia; frontotemporal lobar degeneration; amyotrophic lateral sclerosis; C9ORF72, TDP-43
16.  Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p 
Acta Neuropathologica  2012;123(3):409-417.
Two studies recently identified a GGGGCC hexanucleotide repeat expansion in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72) as the cause of chromosome 9p-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In a cohort of 231 probands with ALS, we identified the C9ORF72 mutation in 17 familial (27.4 %) and six sporadic (3.6%) cases. Patients with the mutation presented with typical motor features of ALS, although subjects with the C9ORF72 mutation had more frequent bulbar onset, compared to those without this mutation. Dementia was significantly more common in ALS patients and families with the C9ORF72 mutation and was usually early-onset FTD. There was striking clinical heterogeneity among the members of individual families with the mutation. The associated neuropathology was a combination of ALS with TDP-ir inclusions and FTLD-TDP. In addition to TDP-43-immunoreactive pathology, a consistent and specific feature of cases with the C9ORF72 mutation was the presence of ubiquitin-positive, TDP-43-negative inclusions in a variety of neuroanatomical regions, such as the cerebellar cortex. These findings support the C9ORF72 mutation as an important newly-recognized cause of ALS, provide a more detailed characterization of the associated clinical and pathological features and further demonstrate the clinical and molecular overlap between ALS and FTD.
PMCID: PMC3322555  PMID: 22228244
amyotrophic lateral sclerosis; frontotemporal dementia; frontotemporal lobar degeneration; C9ORF72; TDP-43; chromosome 9p
17.  Pathogenicity of exonic indels in fused in sarcoma in amyotrophic lateral sclerosis 
Neurobiology of aging  2010;33(2):424.e23-424.e24.
Insertion and deletion variants (indels) within poly glycine tracts of fused in sarcoma (FUS) were initially reported as causative of disease in amyotrophic lateral sclerosis (ALS). Subsequent studies identified similar indels in controls and suggested that these indels may confer susceptibility to ALS. We aimed to elucidate the role of previously published and novel exonic indels in FUS in an extensive cohort of 630 ALS patients and 1063 controls. We detected indels in FUS exons 5, 6, 12 and 14 with similar frequencies in patients (0.95%) and controls (0.75%). Exonic indels in poly glycine tracts were also observed with similar frequencies. The largest indel (p.Gly138_Tyr143del) was observed in one control. In one patient, a 3 base pair deletion in exon 14 (p.Gly475del) was identified, however in-vitro studies did not reveal abnormal localization of p.Gly475del mutant FUS. These findings suggest that not all exonic indels in FUS cause disease.
PMCID: PMC3130814  PMID: 21074900
18.  The chromosome 9 ALS and FTD locus is probably derived from a single founder 
Neurobiology of Aging  2011;33(1):209.e3-209.e8.
We and others have recently reported an association between ALS and single nucleotide polymorphisms on chromosome 9p21 in several populations. Here we show that the associated haplotype is the same in all populations and that several families previously shown to have genetic linkage to this region also share this haplotype. The most parsimonious explanation of these data is that there is a single founder for this form of disease.
PMCID: PMC3312749  PMID: 21925771
Genetics; amyotrophic lateral sclerosis; frontotemporal dementia; Finland
19.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 
Acta Neuropathologica  2011;122(6):673-690.
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of a disease spectrum associated with TDP-43 pathology. Strong evidence supporting this is the existence of kindreds with family members affected by FTD, ALS or mixed features of FTD and ALS, referred to as FTD-MND. Some of these families have linkage to chromosome 9, with hexanucleotide expansion mutation in a noncoding region of C9ORF72. Discovery of the mutation defines c9FTD/ALS. Prior to discovery of mutations in C9ORF72, it was assumed that TDP-43 pathology in c9FTD/ALS was uniform. In this study, we examined the neuropathology and clinical features of 20 cases of c9FTD/ALS from a brain bank for neurodegenerative disorders. Included are six patients clinically diagnosed with ALS, eight FTD, one FTD-MND and four Alzheimer type dementia. Clinical information was unavailable for one patient. Pathologically, the cases all had TDP-43 pathology, but there were three major pathologic groups: ALS, FTLD-MND and FTLD-TDP. The ALS cases were morphologically similar to typical sporadic ALS with almost no extramotor TDP-43 pathology; all had oligodendroglial cytoplasmic inclusions. The FTLD-MND showed predominantly Mackenzie Type 3 TDP-43 pathology, and all had ALS-like pathology in motor neurons, but more extensive extramotor pathology, with oligodendroglial cytoplasmic inclusions and infrequent hippocampal sclerosis. The FTLD-TDP cases had several features similar to FTLD-TDP due to mutations in the gene for progranulin, including Mackenzie Type 1 TDP-43 pathology with neuronal intranuclear inclusions and hippocampal sclerosis. FTLD-TDP patients were older and some were thought to have Alzheimer type dementia. In addition to the FTD and ALS clinical presentations, the present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and presence of hippocampal sclerosis. Moreover, there is pathologic heterogeneity not only between ALS and FTLD, but within the FTLD group. Further studies are needed to address the molecular mechanism of clinical and pathological heterogeneity of c9FTD/ALS due to mutations in C9ORF72.
PMCID: PMC3277860  PMID: 22083254
20.  Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis 
Neuron  2011;72(2):245-256.
Several families have been reported with autosomal dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here we report an expansion of a non-coding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43 based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (22.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS.
PMCID: PMC3202986  PMID: 21944778
21.  Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis 
Mutations in the gene encoding the RNA-binding protein fused in sarcoma (FUS) can cause familial and sporadic amyotrophic lateral sclerosis (ALS) and rarely frontotemproal dementia (FTD). FUS accumulates in neuronal cytoplasmic inclusions (NCIs) in ALS patients with FUS mutations. FUS is also a major pathologic marker for a group of less common forms of frontotemporal lobar degeneration (FTLD), which includes atypical FTLD with ubiquitinated inclusions (aFTLD-U), neuronal intermediate filament inclusion disease (NIFID) and basophilic inclusion body disease (BIBD). These diseases are now called FUS proteinopathies, because they share this disease marker. It is unknown how FUS mutations cause disease and the role of FUS in FTD-FUS cases, which do not have FUS mutations. In this paper we report the development of somatic brain transgenic (SBT) mice using recombinant adeno-associated virus (rAAV) to investigate how FUS mutations lead to neurodegeneration.
We compared SBT mice expressing wild-type human FUS (FUSWT), and two ALS-linked mutations: FUSR521C and FUSΔ14, which lacks the nuclear localization signal. Both FUS mutants accumulated in the cytoplasm relative to FUSWT. The degree of this shift correlated with the severity of the FUS mutation as reflected by disease onset in humans. Mice expressing the most aggressive mutation, FUSΔ14, recapitulated many aspects of FUS proteinopathies, including insoluble FUS, basophilic and eosiniphilic NCIs, and other pathologic markers, including ubiquitin, p62/SQSTM1, α-internexin, and the poly-adenylate(A)-binding protein 1 (PABP-1). However, TDP-43 did not localize to inclusions.
Our data supports the hypothesis that ALS or FTD-linked FUS mutations cause neurodegeneration by increasing cyotplasmic FUS. Accumulation of FUS in the cytoplasm may retain RNA targets and recruit additional RNA-binding proteins, such as PABP-1, into stress-granule like aggregates that coalesce into permanent inclusions that could negatively affect RNA metabolism. Identification of mutations in other genes that cause ALS/FTD, such as C9ORF72, sentaxin, and angiogenin, lends support to the idea that defective RNA metabolism is a critical pathogenic pathway. The SBT FUS mice described here will provide a valuable platform for dissecting the pathogenic mechanism of FUS mutations, define the relationship between FTD and ALS-FUS, and help identify therapeutic targets that are desperately needed for these devastating neurodegenerative disorders.
PMCID: PMC3519790  PMID: 23046583
Amyotrophic lateral sclerosis; Frontotemporal lobar degeneration; Fused in sarcoma proteinopathies; Transgenic mouse models; Adeno-associated virus; Neuronal cytoplasmic inclusions; Ubiquitin; p62/SQSTM1; α-internexin; PABP-1; Stress granules; RNA dysfunction
22.  FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations 
Brain  2011;134(9):2595-2609.
Accumulation of the DNA/RNA binding protein fused in sarcoma as cytoplasmic inclusions in neurons and glial cells is the pathological hallmark of all patients with amyotrophic lateral sclerosis with mutations in FUS as well as in several subtypes of frontotemporal lobar degeneration, which are not associated with FUS mutations. The mechanisms leading to inclusion formation and fused in sarcoma-associated neurodegeneration are only poorly understood. Because fused in sarcoma belongs to a family of proteins known as FET, which also includes Ewing’s sarcoma and TATA-binding protein-associated factor 15, we investigated the potential involvement of these other FET protein family members in the pathogenesis of fused in sarcoma proteinopathies. Immunohistochemical analysis of FET proteins revealed a striking difference among the various conditions, with pathology in amyotrophic lateral sclerosis with FUS mutations being labelled exclusively for fused in sarcoma, whereas fused in sarcoma-positive inclusions in subtypes of frontotemporal lobar degeneration also consistently immunostained for TATA-binding protein-associated factor 15 and variably for Ewing’s sarcoma. Immunoblot analysis of proteins extracted from post-mortem tissue of frontotemporal lobar degeneration with fused in sarcoma pathology demonstrated a relative shift of all FET proteins towards insoluble protein fractions, while genetic analysis of the TATA-binding protein-associated factor 15 and Ewing’s sarcoma gene did not identify any pathogenic variants. Cell culture experiments replicated the findings of amyotrophic lateral sclerosis with FUS mutations by confirming the absence of TATA-binding protein-associated factor 15 and Ewing’s sarcoma alterations upon expression of mutant fused in sarcoma. In contrast, all endogenous FET proteins were recruited into cytoplasmic stress granules upon general inhibition of Transportin-mediated nuclear import, mimicking the findings in frontotemporal lobar degeneration with fused in sarcoma pathology. These results allow a separation of fused in sarcoma proteinopathies caused by FUS mutations from those without a known genetic cause based on neuropathological features. More importantly, our data imply different pathological processes underlying inclusion formation and cell death between both conditions; the pathogenesis in amyotrophic lateral sclerosis with FUS mutations appears to be more restricted to dysfunction of fused in sarcoma, while a more global and complex dysregulation of all FET proteins is involved in the subtypes of frontotemporal lobar degeneration with fused in sarcoma pathology.
PMCID: PMC3170539  PMID: 21856723
FUS; TAF15; EWS; amyotrophic lateral sclerosis; frontotemporal dementia
23.  Ataxin-2 repeat-length variation and neurodegeneration 
Human Molecular Genetics  2011;20(16):3207-3212.
Expanded glutamine repeats of the ataxin-2 (ATXN2) protein cause spinocerebellar ataxia type 2 (SCA2), a rare neurodegenerative disorder. More recent studies have suggested that expanded ATXN2 repeats are a genetic risk factor for amyotrophic lateral sclerosis (ALS) via an RNA-dependent interaction with TDP-43. Given the phenotypic diversity observed in SCA2 patients, we set out to determine the polymorphic nature of the ATXN2 repeat length across a spectrum of neurodegenerative disorders. In this study, we genotyped the ATXN2 repeat in 3919 neurodegenerative disease patients and 4877 healthy controls and performed logistic regression analysis to determine the association of repeat length with the risk of disease. We confirmed the presence of a significantly higher number of expanded ATXN2 repeat carriers in ALS patients compared with healthy controls (OR = 5.57; P= 0.001; repeat length >30 units). Furthermore, we observed significant association of expanded ATXN2 repeats with the development of progressive supranuclear palsy (OR = 5.83; P= 0.004; repeat length >30 units). Although expanded repeat carriers were also identified in frontotemporal lobar degeneration, Alzheimer's and Parkinson's disease patients, these were not significantly more frequent than in controls. Of note, our study identified a number of healthy control individuals who harbor expanded repeat alleles (31–33 units), which suggests caution should be taken when attributing specific disease phenotypes to these repeat lengths. In conclusion, our findings confirm the role of ATXN2 as an important risk factor for ALS and support the hypothesis that expanded ATXN2 repeats may predispose to other neurodegenerative diseases, including progressive supranuclear palsy.
PMCID: PMC3140823  PMID: 21610160
24.  Mutations in the colony stimulating factor 1 receptor (CSF1R) cause hereditary diffuse leukoencephalopathy with spheroids 
Nature Genetics  2011;44(2):200-205.
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal dominantly inherited central nervous system white matter disease with variable clinical presentations including personality and behavioral changes, dementia, depression, parkinsonism, seizures, and others1,2. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor receptor 1 (encoded by CSF1R) in 14 families affected by HDLS. In one kindred, the de novo occurrence of the mutation was confirmed. Follow-up sequencing analyses identified an additional CSF1R mutation in a patient clinically diagnosed with corticobasal syndrome (CBS). In vitro, CSF-1 stimulation resulted in the rapid autophosphorylation of selected tyrosine-residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from a partial loss of CSF1R function. Since CSF1R is a critical mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.
PMCID: PMC3267847  PMID: 22197934
25.  C9ORF72 repeat expansions and other FTD gene mutations in a clinical AD patient series from Mayo Clinic 
Alzheimer disease (AD) and frontotemporal dementia (FTD) are two frequent forms of primary neurodegenerative dementias with overlapping clinical symptoms. Pathogenic mutations of the amyloid precursor protein (APP) and presenilins 1 and 2 (PSEN1, PSEN2) genes have been linked to familial early-onset forms of AD; however, more recently mutations in the common FTD genes encoding the microtubule associated protein tau (MAPT), progranulin (GRN) and C9ORF72, have also been reported in clinically diagnosed AD patients. To access the contribution of mutations in a well-characterized series of patients, we systematically performed genetic analyses of these EOAD and FTD genes in a novel cohort of 227 unrelated probands clinically diagnosed as probable AD which were ascertained at Mayo Clinic Florida between 1997 and 2011. All patients showed first symptoms of dementia before 70 years. We identified 9 different pathogenic mutations in the EOAD genes in a total of 11 patients explaining 4.8% of the patient population. Two mutations were novel: PSEN1 p.Pro218Leu and PSEN2 p.Phe183Ser. Importantly, mutations were also identified in all FTD genes: one patient carried a MAPT p.R406W mutation, one patient carried the p.Arg198Glyfs19X loss-of-function mutation in GRN and two patients were found to carry expanded GGGGCC repeats in the non-coding region of C9ORF72. Together the FTD genes explained the disease in 1.8% of our probable AD population. The identification of mutations in all major FTD genes in this novel cohort of clinically diagnosed AD patients underlines the challenges associated with the differential diagnosis of AD and FTD resulting from overlapping symptomatology and has important implications for molecular diagnostic testing and genetic counseling of clinically diagnosed AD patients. Our findings suggest that in clinically diagnosed AD patients, genetic analyses should include not only the well-established EOAD genes APP, PSEN1 and PSEN2 but also genes that are usually associated with FTD. Finally, the overall low frequency of mutation carriers observed in our study (6.6%) suggests the involvement of other as yet unknown genetic factors associated with AD.
PMCID: PMC3560455  PMID: 23383383
Alzheimer’s disease; frontotemporal dementia; amyloid precursor protein; presenilin 1; presenilin 2; progranulin; microtubule associated protein tau; C9ORF72; mutation; diagnosis.

Results 1-25 (32)