PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("crts, Marc")
1.  Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease 
Neurology  2014;83(21):1906-1913.
Objectives:
The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO-PD) cohort.
Methods:
C9orf72 (G4C2)n repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia.
Results:
A pathogenic (G4C2)n>60 expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G4C2)n repeats; however, we could not detect a robust association between the C9orf72 (G4C2)n repeat and PD, and the population attributable risk was low.
Conclusions:
Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease.
doi:10.1212/WNL.0000000000001012
PMCID: PMC4248456  PMID: 25326098
2.  Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration 
van der Zee, Julie | Van Langenhove, Tim | Kovacs, Gabor G. | Dillen, Lubina | Deschamps, William | Engelborghs, Sebastiaan | Matěj, Radoslav | Vandenbulcke, Mathieu | Sieben, Anne | Dermaut, Bart | Smets, Katrien | Van Damme, Philip | Merlin, Céline | Laureys, Annelies | Van Den Broeck, Marleen | Mattheijssens, Maria | Peeters, Karin | Benussi, Luisa | Binetti, Giuliano | Ghidoni, Roberta | Borroni, Barbara | Padovani, Alessandro | Archetti, Silvana | Pastor, Pau | Razquin, Cristina | Ortega-Cubero, Sara | Hernández, Isabel | Boada, Mercè | Ruiz, Agustín | de Mendonça, Alexandre | Miltenberger-Miltényi, Gabriel | do Couto, Frederico Simões | Sorbi, Sandro | Nacmias, Benedetta | Bagnoli, Silvia | Graff, Caroline | Chiang, Huei-Hsin | Thonberg, Håkan | Perneczky, Robert | Diehl-Schmid, Janine | Alexopoulos, Panagiotis | Frisoni, Giovanni B. | Bonvicini, Christian | Synofzik, Matthis | Maetzler, Walter | vom Hagen, Jennifer Müller | Schöls, Ludger | Haack, Tobias B. | Strom, Tim M. | Prokisch, Holger | Dols-Icardo, Oriol | Clarimón, Jordi | Lleó, Alberto | Santana, Isabel | Almeida, Maria Rosário | Santiago, Beatriz | Heneka, Michael T. | Jessen, Frank | Ramirez, Alfredo | Sanchez-Valle, Raquel | Llado, Albert | Gelpi, Ellen | Sarafov, Stayko | Tournev, Ivailo | Jordanova, Albena | Parobkova, Eva | Fabrizi, Gian Maria | Testi, Silvia | Salmon, Eric | Ströbel, Thomas | Santens, Patrick | Robberecht, Wim | De Jonghe, Peter | Martin, Jean-Jacques | Cras, Patrick | Vandenberghe, Rik | De Deyn, Peter Paul | Cruts, Marc | Sleegers, Kristel | Van Broeckhoven, Christine
Acta Neuropathologica  2014;128(3):397-410.
Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency <0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency <0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24–3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-014-1298-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-014-1298-7
PMCID: PMC4131163  PMID: 24899140
Sequestosome 1; SQSTM1; p62; FTLD; ALS; Rare variants
3.  Promoter DNA methylation regulates progranulin expression and is altered in FTLD 
Background
Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of neurodegenerative diseases associated with personality changes and progressive dementia. Loss-of-function mutations in the growth factor progranulin (GRN) cause autosomal dominant FTLD, but so far the pathomechanism of sporadic FTLD is unclear.
Results
We analyzed whether DNA methylation in the GRN core promoter restricts GRN expression and, thus, might promote FTLD in the absence of GRN mutations. GRN expression in human lymphoblast cell lines is negatively correlated with methylation at several CpG units within the GRN promoter. Chronic treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) strongly induces GRN mRNA and protein levels. In a reporter assay, CpG methylation blocks transcriptional activity of the GRN core promoter. In brains of FTLD patients several CpG units in the GRN promoter are significantly hypermethylated compared to age-matched healthy controls, Alzheimer and Parkinson patients. These CpG motifs are critical for GRN promoter activity in reporter assays. Furthermore, DNA methyltransferase 3a (DNMT3a) is upregulated in FTLD patients and overexpression of DNMT3a reduces GRN promoter activity and expression.
Conclusion
These data suggest that altered DNA methylation is a novel pathomechanism for FTLD that is potentially amenable to targeted pharmacotherapy.
doi:10.1186/2051-5960-1-16
PMCID: PMC3893557  PMID: 24252647
5-aza-2′-deoxycytidine; DNA methylation; Epigenetics; FTLD; Progranulin
4.  The genetics and neuropathology of frontotemporal lobar degeneration 
Acta Neuropathologica  2012;124(3):353-372.
Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of disorders characterized by disturbances of behavior and personality and different types of language impairment with or without concomitant features of motor neuron disease or parkinsonism. FTLD is characterized by atrophy of the frontal and anterior temporal brain lobes. Detailed neuropathological studies have elicited proteinopathies defined by inclusions of hyperphosphorylated microtubule-associated protein tau, TAR DNA-binding protein TDP-43, fused-in-sarcoma or yet unidentified proteins in affected brain regions. Rather than the type of proteinopathy, the site of neurodegeneration correlates relatively well with the clinical presentation of FTLD. Molecular genetic studies identified five disease genes, of which the gene encoding the tau protein (MAPT), the growth factor precursor gene granulin (GRN), and C9orf72 with unknown function are most frequently mutated. Rare mutations were also identified in the genes encoding valosin-containing protein (VCP) and charged multivesicular body protein 2B (CHMP2B). These genes are good markers to distinguish underlying neuropathological phenotypes. Due to the complex landscape of FTLD diseases, combined characterization of clinical, imaging, biological and genetic biomarkers is essential to establish a detailed diagnosis. Although major progress has been made in FTLD research in recent years, further studies are needed to completely map out and correlate the clinical, pathological and genetic entities, and to understand the underlying disease mechanisms. In this review, we summarize the current state of the rapidly progressing field of genetic, neuropathological and clinical research of this intriguing condition.
doi:10.1007/s00401-012-1029-x
PMCID: PMC3422616  PMID: 22890575
Frontotemporal lobar degeneration; Proteinopathy; MAPT; GRN; C9orf72; VCP; CHMP2B; Tau; TDP-43; FUS
5.  Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration 
Archives of neurology  2011;68(4):488-497.
Objective
To assess the relative frequency of unique mutations and their associated characteristics in 97 individuals with mutations in progranulin (GRN), an important cause of frontotemporal lobar degeneration (FTLD).
Participants and Design
A 46-site International Frontotemporal Lobar Degeneration Collaboration was formed to collect cases of FTLD with TAR DNA-binding protein of 43-kDa (TDP-43)–positive inclusions (FTLD-TDP). We identified 97 individuals with FTLD-TDP with pathogenic GRN mutations (GRN+ FTLD-TDP), assessed their genetic and clinical characteristics, and compared them with 453 patients with FTLD-TDP in which GRN mutations were excluded (GRN− FTLD-TDP). No patients were known to be related. Neuropathologic characteristics were confirmed as FTLD-TDP in 79 of the 97 GRN+ FTLDTDP cases and all of the GRN− FTLD-TDP cases.
Results
Age at onset of FTLD was younger in patients with GRN+ FTLD-TDP vs GRN− FTLD-TDP (median, 58.0 vs 61.0 years; P<.001), as was age at death (median, 65.5 vs 69.0 years; P<.001). Concomitant motor neuron disease was much less common in GRN+ FTLDTDP vs GRN− FTLD-TDP (5.4% vs 26.3%; P<.001). Fifty different GRN mutations were observed, including 2 novel mutations: c.139delG (p.D47TfsX7) and c.378C>A (p.C126X). The 2 most common GRN mutations were c.1477C>T (p.R493X, found in 18 patients, representing 18.6% of GRN cases) and c.26C>A (p.A9D, found in 6 patients, representing 6.2% of cases). Patients with the c.1477C>T mutation shared a haplotype on chromosome 17; clinically, they resembled patients with other GRN mutations. Patients with the c.26C>A mutation appeared to have a younger age at onset of FTLD and at death and more parkinsonian features than those with other GRN mutations.
Conclusion
GRN+ FTLD-TDP differs in key features from GRN− FTLD-TDP.
doi:10.1001/archneurol.2011.53
PMCID: PMC3160280  PMID: 21482928
6.  TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort 
Brain  2011;134(3):808-815.
In a genome-wide association study of frontotemporal lobar degeneration with pathological inclusions of TAR DNA-binding protein, significant association was obtained with three single nucleotide polymorphisms at 7p21.3, in a region encompassing the gene TMEM106B. This study also suggested a potential modifying effect of TMEM106B on disease since the association was strongest in progranulin mutation carriers. Further, the risk effect seemed to correlate with increased TMEM106B expression in patients. In the present study, we sought to replicate these three findings using an independent Flanders–Belgian cohort of primarily clinically diagnosed patients with frontotemporal lobar degeneration (n = 288). We were able to confirm the association with TMEM106B with a P-value of 0.008 for rs1990622, the top marker from the genome-wide association study [odds ratio 0.75 (95% confidence interval 0.61–0.93)]. Further, high-density single nucleotide polymorphism mapping suggested that the association was solely driven by the gene TMEM106B. Homozygous carriers of the TMEM106B protective alleles had a 50% reduced risk of developing frontotemporal lobar degeneration. However, we were unable to detect a modifying effect of the TMEM106B single nucleotide polymorphisms on onset age in progranulin mutation carriers belonging to an extended, clinical and pathological well-documented founder family segregating a progranulin null mutation. Also, we could not observe significant differences in messenger RNA expression between patients and control individuals in lymphoblast cell lines and in brain frontal cortex. In conclusion, we replicated the genetic TMEM106B association in a primarily clinically diagnosed cohort of patients with frontotemporal lobar degeneration from Flanders–Belgium. Additional studies are needed to unravel the molecular role of TMEM106B in disease onset and pathogenesis.
doi:10.1093/brain/awr007
PMCID: PMC3044834  PMID: 21354975
frontotemporal lobar degeneration; TMEM106B; genetic association; risk factor
7.  Genetic Etiology of Parkinson Disease Associated with Mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 Genes: A Mutation Update 
Human Mutation  2010;31(7):763-780.
To date, molecular genetic analyses have identified over 500 distinct DNA variants in five disease genes associated with familial Parkinson disease; α-synuclein (SNCA), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-rich repeat kinase 2 (LRRK2). These genetic variants include ∼82% simple mutations and ∼18% copy number variations. Some mutation subtypes are likely underestimated because only few studies reported extensive mutation analyses of all five genes, by both exonic sequencing and dosage analyses. Here we present an update of all mutations published to date in the literature, systematically organized in a novel mutation database (http://www.molgen.ua.ac.be/PDmutDB). In addition, we address the biological relevance of putative pathogenic mutations. This review emphasizes the need for comprehensive genetic screening of Parkinson patients followed by an insightful study of the functional relevance of observed genetic variants. Moreover, while capturing existing data from the literature it became apparent that several of the five Parkinson genes were also contributing to the genetic etiology of other Lewy Body Diseases and Parkinson-plus syndromes, indicating that mutation screening is recommendable in these patient groups. Hum Mutat 31:763–780, 2010. © 2010 Wiley-Liss, Inc.
doi:10.1002/humu.21277
PMCID: PMC3056147  PMID: 20506312
Parkinson disease; genetic etiology; database; SNCA; PARK2; PINK1; PARK7; LRRK2
8.  Locus-Specific Mutation Databases for Neurodegenerative Brain Diseases 
Human Mutation  2012;33(9):1340-1344.
The Alzheimer disease and frontotemporal dementia (AD&FTLD) and Parkinson disease (PD) Mutation Databases make available curated information of sequence variations in genes causing Mendelian forms of the most common neurodegenerative brain disease AD, frontotemporal lobar degeneration (FTLD), and PD. They are established resources for clinical geneticists, neurologists, and researchers in need of comprehensive, referenced genetic, epidemiologic, clinical, neuropathological, and/or cell biological information of specific gene mutations in these diseases. In addition, the aggregate analysis of all information available in the databases provides unique opportunities to extract mutation characteristics and genotype–phenotype correlations, which would be otherwise unnoticed and unexplored. Such analyses revealed that 61.4% of mutations are private to one single family, while only 5.7% of mutations occur in 10 or more families. The five mutations with most frequent independent observations occur in 21% of AD, 43% of FTLD, and 48% of PD families recorded in the Mutation Databases, respectively. Although these figures are inevitably biased by a publishing policy favoring novel mutations, they probably also reflect the occurrence of multiple rare and few relatively common mutations in the inherited forms of these diseases. Finally, with the exception of the PD genes PARK2 and PINK1, all other genes are associated with more than one clinical diagnosis or characteristics thereof. Hum Mutat 33:1340–1344, 2012. © 2012 Wiley Periodicals, Inc.
doi:10.1002/humu.22117
PMCID: PMC3465795  PMID: 22581678
locus-specific; mutation database; neurodegenerative brain disease; Alzheimer disease; frontotemporal lobar degeneration; Parkinson disease
9.  Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins 
Nature Communications  2014;5:4835.
The Ashkenazi Jewish (AJ) population is a genetic isolate close to European and Middle Eastern groups, with genetic diversity patterns conducive to disease mapping. Here we report high-depth sequencing of 128 complete genomes of AJ controls. Compared with European samples, our AJ panel has 47% more novel variants per genome and is eightfold more effective at filtering benign variants out of AJ clinical genomes. Our panel improves imputation accuracy for AJ SNP arrays by 28%, and covers at least one haplotype in ≈67% of any AJ genome with long, identical-by-descent segments. Reconstruction of recent AJ history from such segments confirms a recent bottleneck of merely ≈350 individuals. Modelling of ancient histories for AJ and European populations using their joint allele frequency spectrum determines AJ to be an even admixture of European and likely Middle Eastern origins. We date the split between the two ancestral populations to ≈12–25 Kyr, suggesting a predominantly Near Eastern source for the repopulation of Europe after the Last Glacial Maximum.
Ashkenazi Jews are a genetically isolated population with distinct patterns of genetic diversity. Here, the authors sequence the genomes of 128 Ashkenazi Jewish individuals and use the sequence information to provide insight into the population's European and Middle Eastern origins.
doi:10.1038/ncomms5835
PMCID: PMC4164776  PMID: 25203624

Results 1-9 (9)