PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (36)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  CSF neurofilament concentration reflects disease severity in frontotemporal degeneration 
Annals of neurology  2014;75(1):116-126.
Objective
Cerebrospinal fluid (CSF) neurofilament light chain (NfL) concentration is elevated in neurological disorders including frontotemporal degeneration (FTD). We investigated the clinical correlates of elevated CSF NfL levels in FTD.
Methods
CSF NfL, amyloid-β42 (Aβ42), tau and phosphorylated tau (ptau) concentrations were compared in 47 normal controls (NC), 8 asymptomatic gene carriers (NC2) of FTD-causing mutations, 79 FTD (45 behavioral variant frontotemporal dementia [bvFTD], 18 progressive nonfluent aphasia [PNFA], 16 semantic dementia [SD]), 22 progressive supranuclear palsy, 50 Alzheimer’s disease, 6 Parkinson’s disease and 17 corticobasal syndrome patients. Correlations between CSF analyte levels were performed with neuropsychological measures and the Clinical Dementia Rating scale sum of boxes (CDRsb). Voxel-based morphometry of structural MR images determined the relationship between brain volume and CSF NfL.
Results
Mean CSF NfL concentrations were higher in bvFTD, SD and PNFA than other groups. NfL in NC2 was similar to NC. CSF NfL, but not other CSF measures, correlated with CDRsb and neuropsychological measures in FTD, and not in other diagnostic groups. Analyses in two independent FTD cohorts and a group of autopsy verified or biomarker enriched cases confirmed the larger group analysis. In FTD, gray and white matter volume negatively correlated with CSF NfL concentration, such that individuals with highest NfL levels exhibited the most atrophy.
Interpretation
CSF NfL is elevated in symptomatic FTD and correlates with disease severity. This measurement may be a useful surrogate endpoint of disease severity in FTD clinical trials. Longitudinal studies of CSF NfL in FTD are warranted.
doi:10.1002/ana.24052
PMCID: PMC4020786  PMID: 24242746
2.  Frontotemporal Degeneration, the Next Therapeutic Frontier: Molecules and Animal Models for FTD drug development (Part 1 of 2 articles) 
Frontotemporal Degeneration (FTD) is a common cause of dementia for which there are currently no approved therapies. Over the past decade there has been an explosion of knowledge about the biology and clinical features of FTD that has identified a number of promising therapeutic targets as well as animal models in which to develop drugs. The close association of some forms of FTD with neuropathological accumulation of tau protein or increased neuroinflammation due to progranulin protein deficiency suggests that a drug’s success in treating FTD may predict efficacy in more common diseases such as Alzheimer’s disease (AD). A variety of regulatory incentives, clinical features of FTD, such as rapid disease progression, and relatively pure molecular pathology, suggest that there are advantages to developing drugs for FTD as compared to other more common neurodegenerative diseases such as AD. In March 2011, the Frontotemporal Dementia Treatment Study Group (FTSG) sponsored a conference entitled,“ FTD, the Next Therapeutic Frontier,” focused on pre-clinical aspects of FTD drug development. The goal of the meeting was to promote collaborations between academic researchers and biotechnology and pharmaceutical researchers to accelerate the development of new treatments for FTD. Here we report the key findings from the conference, including the rationale for FTD drug development, epidemiological, genetic and neuropathological features of FTD, FTD animal models and how best to use them and examples of successful drug-development collaborations in other neurodegenerative diseases.
doi:10.1016/j.jalz.2012.03.002
PMCID: PMC3542408  PMID: 23043900
3.  The Advantages of FTD Drug Development (Part 2 of FTD: The Next Therapeutic Frontier) 
Frontotemporal Degeneration (FTD) encompasses a spectrum of related neurodegenerative disorders with behavioral, language and motor phenotypes for which there are currently no effective therapies. This manuscript is the second of two articles that summarize the presentations and discussions that occurred at two symposia in 2011 sponsored by the Frontotemporal Dementia Treatment Study Group (FTSG), a collaborative group of academic and industry researchers that is devoted to developing treatments for FTD. This manuscript discusses the current status of FTD clinical research that is relevant to the conduct of clinical trials and why FTD research may be an attractive pathway for developing therapies for neurodegenerative disorders. The clinical and molecular features of FTD, including rapid disease progression and relatively pure molecular pathology, suggest that there are advantages to developing drugs for FTD as compared to other dementias. FTD qualifies as orphan indication, providing additional advantages for drug development. Two recent sets of consensus diagnostic criteria will facilitate the identification of patients with FTD, and a variety of neuropsychological, functional and behavioral scales have been shown to be sensitive to disease progression. Moreover, quantitative neuroimaging measurements demonstrate progressive brain atrophy in FTD at rates that may surpass Alzheimer's disease (AD). Finally, the similarities between FTD and other neurodegenerative diseases with drug development efforts already underway suggest that FTD researchers will be able to draw upon this experience to create a roadmap for FTD drug development. We conclude that FTD research has reached sufficient maturity to pursue clinical development of specific FTD therapies.
doi:10.1016/j.jalz.2012.03.003
PMCID: PMC3562382  PMID: 23062850
4.  Neurodegenerative disease phenotypes in carriers of MAPT p.A152T, a risk factor for frontotemporal dementia spectrum disorders and Alzheimer's disease 
Alzheimer disease and associated disorders  2013;27(4):10.1097/WAD.0b013e31828cc357.
Recently, Coppola and colleagues demonstrated that a rare MAPT sequence variant, c.454G>A (p.A152T), significantly increases the risk of frontotemporal dementia (FTD) spectrum disorders and Alzheimer's disease (AD) in a screen of 15,369 subjects1. We describe clinical features of 9 patients with neurodegenerative disease (4 women) harboring p.A152T, aged 51 to 79 years at symptom onset. Seven developed FTD spectrum clinical syndromes, including progressive supranuclear palsy syndrome (PSP, n=2), behavioral variant FTD (bvFTD, n=1), nonfluent variant primary progressive aphasia (nfvPPA, n=2), and corticobasal syndrome (CBS, n=2); two patients were diagnosed with clinical AD. Thus, MAPT p.A152T is associated with a variety of FTD spectrum clinical presentations, although patients with clinical AD are also identified. These data warrant larger studies with clinicopathological correlation to elucidate the influence of this genetic variant on neurodegenerative disease.
doi:10.1097/WAD.0b013e31828cc357
PMCID: PMC3796183  PMID: 23518664
All Cognitive Disorders/Dementia; Alzheimer's disease; Frontotemporal Dementia; Corticobasal degeneration; Progressive Supranuclear Palsy
5.  TDP-43 Frontotemporal Lobar Degeneration and Autoimmune Disease 
Journal of neurology, neurosurgery, and psychiatry  2013;84(9):10.1136/jnnp-2012-304644.
Background
The aetiology and pathogenesis of non-genetic forms of frontotemporal dementia (FTD) is unknown and even with the genetic forms of FTD, pathogenesis remains elusive. Given the association between systemic inflammation and other neurodegenerative processes, links between autoimmunity and FTD need to be explored.
Objective
To describe the prevalence of systemic autoimmune disease in semantic variant primary progressive aphasia (svPPA), a clinical cohort, and in progranulin (PGRN) mutation carriers compared to neurologically healthy normal controls (NC) and Alzheimer’s disease (AD) as dementia controls.
Design
Case control.
Setting
Academic medical centres.
Participants
129 svPPA, 39 PGRN, 186 NC, and 158 AD patients underwent chart review for autoimmune conditions. A large subset of svPPA, PGRN, and NC cohorts underwent serum analysis for tumor necrosis factor α (TNF-α) levels.
Outcome Measures
Chi-square comparison of autoimmune prevalence and follow up logistic regression.
Results
There was a significantly increased risk of autoimmune disorders clustered around inflammatory arthritides, cutaneous disorders, and gastrointestinal conditions in the svPPA and PGRN cohorts. Elevated TNF-α levels were observed in svPPA and PGRN compared to NC.
Conclusions
svPPA and PGRN are associated with increased prevalence of specific and related autoimmune diseases compared to NC and AD. These findings suggest a unique pattern of systemic inflammation in svPPA and PGRN and open new research avenues for understanding and treating disorders associated with underlying transactive response DNA-binding protein 43 (TDP-43) aggregation.
doi:10.1136/jnnp-2012-304644
PMCID: PMC3840954  PMID: 23543794
6.  Memantine in frontotemporal lobar degeneration: A multicenter, randomised, double-blind, placebo-controlled trial 
Lancet neurology  2013;12(2):149-156.
Background
Memantine has been used off-label to treat frontotemporal lobar degeneration (FTD). A previous 26 week open label study suggested a transient, modest benefit on neuropsychiatric symptoms as measured by the Neuropsychiatric Inventory (NPI).
Methods
We performed a randomized, parallel group, double blind, placebo controlled trial of 20 mg memantine taken orally daily for 26 weeks in FTD. Participants met Neary criteria for behavioral variant (bvFTD) or semantic dementia (SD) and had characteristic brain atrophy. Use of cholinesterase inhibitors was prohibited. The objective of the study was to determine whether memantine is an effective treatment for FTD. Individuals were randomized to memantine or matched placebo tablets in blocks of two and four. Primary endpoints were the change in total NPI score and Clinical Global Impression of Change (CGIC) scores after 26 weeks. Secondary outcomes included a neuropsychological battery, and other cognitive, global and activity of daily living measures. Clinicaltrials.gov identifier: NCT00545974
Findings
100 subjects were screened, 81 were randomized, 5 (6%) discontinued and 76 completed all visits. Enrollment numbers were lower than planned due to many subjects’ preference to take memantine or cholinesterase inhibitors off-label rather than participate in a clinical trial. 39 memantine and 42 placebo subjects entered the primary intent to treat analysis. There was no effect of memantine treatment on either the NPI (mean difference [MD] 2.2, 95%CI: −3.9, 8.3, p = 0.47) or CGIC (MD 0, 95%CI: −0.4, 0.4, p = 0.90) after 26 weeks of treatment. Memantine was generally well tolerated, however there were more frequent cognitive adverse events in the memantine group.
Interpretation
There was no benefit of memantine treatment in bvFTD or SD. These data do not support memantine use in FTD.
Funding
Forest Research Institute
doi:10.1016/S1474-4422(12)70320-4
PMCID: PMC3756890  PMID: 23290598
7.  Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias 
Neurology  2013;80(24):2180-2185.
Objective:
The objective of this study was to determine which aspects of executive functions are most affected in behavioral variant frontotemporal dementia (bvFTD) and best differentiate this syndrome from Alzheimer disease (AD).
Methods:
We compared executive functions in 22 patients diagnosed with bvFTD, 26 with AD, and 31 neurologically healthy controls using a conceptually driven and comprehensive battery of executive function tests, the NIH EXAMINER battery (http://examiner.ucsf.edu).
Results:
The bvFTD and the AD patients were similarly impaired compared with controls on tests of working memory, category fluency, and attention, but the patients with bvFTD showed significantly more severe impairments than the patients with AD on tests of letter fluency, antisaccade accuracy, social decision-making, and social behavior. Discriminant function analysis with jackknifed cross-validation classified the bvFTD and AD patient groups with 73% accuracy.
Conclusions:
Executive function assessment can support bvFTD diagnosis when measures are carefully selected to emphasize frontally specific functions.
doi:10.1212/WNL.0b013e318296e940
PMCID: PMC3721104  PMID: 23658382
8.  Intrinsic connectivity network disruption in progressive supranuclear palsy 
Annals of neurology  2013;73(5):603-616.
Objective
Progressive supranuclear palsy (PSP) has been conceptualized as a large-scale network disruption, but the specific network targeted has not been fully characterized. We sought to delineate the affected network in patients with clinical PSP.
Methods
Using task-free fMRI, we mapped intrinsic connectivity to the dorsal midbrain tegmentum (dMT), a region which shows focal atrophy in PSP. Two healthy control groups (1 young, 1 older) were used to define and replicate the normal connectivity pattern, and patients with PSP were compared to an independent matched healthy control group on measures of network connectivity.
Results
Healthy young and older subjects showed a convergent pattern of connectivity to the dMT, including brainstem, cerebellar, diencephalic, basal ganglia, and cortical regions involved in skeletal, oculomotor, and executive control. Patients with PSP showed significant connectivity disruptions within this network, particularly within cortico-subcortical and cortico-brainstem interactions. Patients with more severe functional impairment showed lower mean dMT network connectivity scores.
Interpretation
This study defines a PSP-related intrinsic connectivity network in the healthy brain and demonstrates the sensitivity of network-based imaging methods to PSP-related physiological and clinical changes.
doi:10.1002/ana.23844
PMCID: PMC3732833  PMID: 23536287
9.  Atypical, slowly progressive behavioral variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion 
Background
Some patients meeting behavioral variant frontotemporal dementia (bvFTD) diagnostic criteria progress slowly and plateau at mild symptom severity. Such patients have mild neuropsychological and functional impairments, lack characteristic bvFTD brain atrophy, and have thus been referred to as bvFTD “phenocopies” or slowly progressive (bvFTD-SP). The few patients with bvFTD-SP that have been studied at autopsy have found no evidence of FTD pathology, suggesting that bvFTD-SP is neuropathologically distinct from other forms of FTD. Here, we describe two patients with bvFTD-SP with chromosome 9 open reading frame 72 (C9ORF72) hexanucleotide expansions.
Methods
Three hundred and eighty-four patients with FTD clinical spectrum and Alzheimer’s disease diagnoses were screened for C9ORF72 expansion. Two bvFTD-SP mutation carriers were identified. Neuropsychological and functional data, as well as brain atrophy patterns assessed using voxel-based morphometry (VBM), were compared with 44 patients with sporadic bvFTD and 85 healthy controls.
Results
Both patients were age 48 at baseline and met possible bvFTD criteria. In the first patient, VBM revealed thalamic and posterior insula atrophy. Over seven years, his neuropsychological performance and brain atrophy remained stable. In the second patient, VBM revealed cortical atrophy with subtle frontal and insular volume loss. Over two years, her neuropsychological and functional scores as well as brain atrophy remained stable.
Conclusions
C9ORF72 mutations can present with a bvFTD-SP phenotype. Some bvFTD-SP patients may have neurodegenerative pathology, and C9ORF72 mutations should be considered in patients with bvFTD-SP and a family history of dementia or motor neuron disease.
doi:10.1136/jnnp-2011-301883
PMCID: PMC3388906  PMID: 22399793
C9ORF72; C9FTD/ALS; frontotemporal dementia; genetics; dementia
10.  An Epigenetic Signature in Peripheral Blood Associated with the Haplotype on 17q21.31, a Risk Factor for Neurodegenerative Tauopathy 
PLoS Genetics  2014;10(3):e1004211.
Little is known about how changes in DNA methylation mediate risk for human diseases including dementia. Analysis of genome-wide methylation patterns in patients with two forms of tau-related dementia – progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD) – revealed significant differentially methylated probes (DMPs) in patients versus unaffected controls. Remarkably, DMPs in PSP were clustered within the 17q21.31 region, previously known to harbor the major genetic risk factor for PSP. We identified and replicated a dose-dependent effect of the risk-associated H1 haplotype on methylation levels within the region in blood and brain. These data reveal that the H1 haplotype increases risk for tauopathy via differential methylation at that locus, indicating a mediating role for methylation in dementia pathophysiology.
Author Summary
Progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD) are two neurodegenerative diseases linked, at the pathologic and genetic level, to the microtubule associated protein tau. We studied epigenetic changes (DNA methylation levels) in peripheral blood from patients with PSP, FTD, and unaffected controls. Analysis of genome-wide methylation patterns revealed significant differentially methylated probes in patients versus unaffected controls. Remarkably, differentially methylated probes in PSP vs. controls were preferentially clustered within the 17q21.31 region, previously known to harbor the major genetic risk factor for PSP. We identified and replicated a dose-dependent effect of the risk-associated H1 haplotype on methylation levels within the region in independent datasets in blood and brain. These data reveal that the H1 haplotype increases risk for tauopathy via differential methylation, indicating a mediating role for methylation in dementia pathophysiology.
doi:10.1371/journal.pgen.1004211
PMCID: PMC3945475  PMID: 24603599
11.  Criteria for the diagnosis of corticobasal degeneration 
Neurology  2013;80(5):496-503.
Current criteria for the clinical diagnosis of pathologically confirmed corticobasal degeneration (CBD) no longer reflect the expanding understanding of this disease and its clinicopathologic correlations. An international consortium of behavioral neurology, neuropsychology, and movement disorders specialists developed new criteria based on consensus and a systematic literature review. Clinical diagnoses (early or late) were identified for 267 nonoverlapping pathologically confirmed CBD cases from published reports and brain banks. Combined with consensus, 4 CBD phenotypes emerged: corticobasal syndrome (CBS), frontal behavioral-spatial syndrome (FBS), nonfluent/agrammatic variant of primary progressive aphasia (naPPA), and progressive supranuclear palsy syndrome (PSPS). Clinical features of CBD cases were extracted from descriptions of 209 brain bank and published patients, providing a comprehensive description of CBD and correcting common misconceptions. Clinical CBD phenotypes and features were combined to create 2 sets of criteria: more specific clinical research criteria for probable CBD and broader criteria for possible CBD that are more inclusive but have a higher chance to detect other tau-based pathologies. Probable CBD criteria require insidious onset and gradual progression for at least 1 year, age at onset ≥50 years, no similar family history or known tau mutations, and a clinical phenotype of probable CBS or either FBS or naPPA with at least 1 CBS feature. The possible CBD category uses similar criteria but has no restrictions on age or family history, allows tau mutations, permits less rigorous phenotype fulfillment, and includes a PSPS phenotype. Future validation and refinement of the proposed criteria are needed.
doi:10.1212/WNL.0b013e31827f0fd1
PMCID: PMC3590050  PMID: 23359374
12.  Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family 
Background
Frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) is a heritable form of FTD, but the gene(s) responsible for the majority of autosomal dominant FTD-ALS cases have yet to be found. Previous studies have identified a region on chromosome 9p that is associated with FTD and ALS.
Methods
The authors report the clinical, volumetric MRI, neuropathological and genetic features of a new chromosome 9p-linked FTD-ALS family, VSM-20.
Results
Ten members of family VSM-20 displayed heterogeneous clinical phenotypes of isolated behavioural-variant FTD (bvFTD), ALS or a combination of the two. Parkinsonism was common, with one individual presenting with a corticobasal syndrome. Analysis of structural MRI scans from five affected family members revealed grey- and white-matter loss that was most prominent in the frontal lobes, with mild parietal and occipital lobe atrophy, but less temporal lobe atrophy than in 10 severity-matched sporadic bvFTD cases. Autopsy in three family members showed a consistent and unique subtype of FTLD-TDP pathology. Genome-wide linkage analysis conclusively linked family VSM-20 to a 28.3 cM region between D9S1808 and D9S251 on chromosome 9p, reducing the published minimal linked region to a 3.7 Mb interval. Genomic sequencing and expression analysis failed to identify mutations in the 10 known and predicted genes within this candidate region, suggesting that next-generation sequencing may be needed to determine the mutational mechanism associated with chromosome 9p-linked FTD-ALS.
Conclusions
Family VSM-20 significantly reduces the region linked to FTD-ALS on chromosome 9p. A distinct pattern of brain atrophy and neuropathological findings may help to identify other families with FTD-ALS caused by this genetic abnormality.
doi:10.1136/jnnp.2009.204081
PMCID: PMC3017222  PMID: 20562461
13.  Visual search patterns in semantic dementia show paradoxical facilitation of binding processes 
Neuropsychologia  2011;49(3):468-478.
While patients with Alzheimer’s disease (AD) show deficits in attention, manifested by inefficient performance on visual search, new visual talents can emerge in patients with frontotemporal lobar degeneration (FTLD), suggesting that, at least in some of the patients, visual attention is spared, if not enhanced. To investigate the underlying mechanisms for visual talent in FTLD (behavioral variant FTD [bvFTD] and semantic dementia [SD]) patients, we measured performance on a visual search paradigm that includes both feature and conjunction search, while simultaneously monitoring saccadic eye movements. AD patients were impaired relative to healthy controls (NC) and FTLD patients on both feature and conjunction search. BvFTD patients showed less accurate performance only on the conjunction search task, but slower response times than NC on all three tasks. In contrast, SD patients were as accurate as controls and had faster response times when faced with the largest number of distracters in the conjunction search task. Measurement of saccades during visual search showed that AD patients explored more of the image, whereas SD patients explored less of the image before making a decision as to whether the target was present. Performance on the conjunction search task positively correlated with gray matter volume in the superior parietal lobe, precuneus, middle frontal gyrus and superior temporal gyrus. These data suggest that despite the presence of extensive temporal lobe degeneration, visual talent in SD may be facilitated by more efficient visual search under distracting conditions due to enhanced function in the dorsal frontoparietal attention network.
doi:10.1016/j.neuropsychologia.2010.12.039
PMCID: PMC3046767  PMID: 21215762
Alzheimer’s disease; frontotemporal dementia; conjunction search; voxel-based morphometry; eye movements
14.  Patterns of striatal degeneration in frontotemporal dementia 
Behavioral variant frontotemporal dementia and semantic dementia have been associated with striatal degeneration, but few studies have delineated striatal subregion volumes in vivo or related them to clinical phenotype. We traced caudate, putamen, and nucleus accumbens on MR images to quantify volumes of these structures in behavioral variant frontotemporal dementia, semantic dementia, Alzheimer’s disease, and healthy controls (n = 12 per group). We further related these striatal volumes to clinical deficits and neuropathological findings in a subset of patients. Behavioral variant frontotemporal dementia and semantic dementia showed significant overall striatal atrophy compared with controls. Moreover, behavioral variant frontotemporal dementia showed panstriatal degeneration whereas semantic dementia featured a more focal pattern involving putamen and accumbens. Right-sided striatal atrophy, especially in the putamen, correlated with overall behavioral symptom severity and with specific behavioral domains. At autopsy, patients with behavioral variant frontotemporal dementia and semantic dementia showed striking and severe tau or TAR DNA-binding protein of 43 kDa pathology, especially in ventral parts of the striatum. These results demonstrate that ventral striatum degeneration is a prominent shared feature in behavioral variant frontotemporal dementia and semantic dementia and may contribute to social-emotional deficits common to both disorders.
doi:10.1097/WAD.0b013e31824a7df4
PMCID: PMC3389579  PMID: 22367382
15.  Anti-saccade performance predicts executive function and brain structure in normal elders 
Objective
To assess the neuropsychological and anatomical correlates of anti-saccade (AS) task performance in normal elders.
Background
The AS task correlates with neuropsychological measures of executive function and frontal lobe volume in neurological diseases, but has not been studied in a well-characterized normal elderly population. Because executive dysfunction can indicate an increased risk for cognitive decline in cognitively normal elders, we hypothesized that AS performance might be a sensitive test of age-related processes that impair cognition.
Method
The percentage of correct AS responses was evaluated in forty-eight normal elderly subjects and compared with neuropsychological test performance using linear regression analysis and gray matter volume measured on MRI scans using voxel-based morphometry.
Results
The percentage of correct AS responses was associated with measures of executive function, including modified trails, design fluency, Stroop inhibition, abstraction, and backward digit span, and correlated with gray matter volume in two brain regions involved in inhibitory control: the left inferior frontal junction and the right supplementary eye field. The association of AS correct responses with neuropsychological measures of executive function was strongest in individuals with fewer years of education.
Conclusions
The AS task is sensitive to executive dysfunction and frontal lobe structural alterations in normal elders.
doi:10.1097/WNN.0b013e318223f6c6
PMCID: PMC3775477  PMID: 21697711
anti-saccade; normal aging; executive function; frontal lobe; cognitive reserve
16.  Genetic Correction of Tauopathy Phenotypes in Neurons Derived from Human Induced Pluripotent Stem Cells 
Stem Cell Reports  2013;1(3):226-234.
Summary
Tauopathies represent a group of neurodegenerative disorders characterized by the accumulation of pathological TAU protein in brains. We report a human neuronal model of tauopathy derived from induced pluripotent stem cells (iPSCs) carrying a TAU-A152T mutation. Using zinc-finger nuclease-mediated gene editing, we generated two isogenic iPSC lines: one with the mutation corrected, and another with the homozygous mutation engineered. The A152T mutation increased TAU fragmentation and phosphorylation, leading to neurodegeneration and especially axonal degeneration. These cellular phenotypes were consistent with those observed in a patient with TAU-A152T. Upon mutation correction, normal neuronal and axonal morphologies were restored, accompanied by decreases in TAU fragmentation and phosphorylation, whereas the severity of tauopathy was intensified in neurons with the homozygous mutation. These isogenic TAU-iPSC lines represent a critical advancement toward the accurate modeling and mechanistic study of tauopathies with human neurons and will be invaluable for drug-screening efforts and future cell-based therapies.
Highlights
•A human neuron model of tauopathy using TAU-A152T-iPSCs•Correction of TAU-A152T mutation eliminates tauopathy•Engineered homozygous TAU-A152T mutation intensifies tauopathy•A152T mutation increases TAU proteolysis, leading to tauopathy
doi:10.1016/j.stemcr.2013.08.001
PMCID: PMC3849235  PMID: 24319659
17.  Off-Label Medication Use in Frontotemporal Dementia 
Objective
There are no Food and Drug Administration (FDA)-approved medications indicated for the treatment of frontotemporal dementia (FTD). We sought to determine the most commonly used drugs used to treat behavioral variant FTD (bvFTD) in specialized dementia clinics.
Methods
Medication and demographic data from the Alzheimer’s Disease Research Centers of California (ARCC) and a multicenter FTD natural history study (NHS) data set were compared in bvFTD and Alzheimer’s disease (AD), and effects of demographic variables were assessed using logistic regression.
Results
Overall, the percentage of patients taking one or more FDA-approved AD or psychiatric medications was similar in bvFTD and AD; however, after controlling for demographic variables, acetylcholinesterase inhibitor (AChI) use was less common in bvFTD, whereas memantine use remained similar in the 2 groups.
Conclusions
Despite lack of evidence for efficacy, the use of AChIs and memantine is common in bvFTD. Clinical trials should be pursued to determine the optimal therapeutic interventions for bvFTD.
doi:10.1177/1533317509356692
PMCID: PMC2862544  PMID: 20124256
frontotemporal dementia; Alzheimer’s disease; treatment; donepezil; memantine; galantamine; antipsychotic agents
18.  Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases 
Coppola, Giovanni | Chinnathambi, Subashchandrabose | Lee, Jason JiYong | Dombroski, Beth A. | Baker, Matt C. | Soto-Ortolaza, Alexandra I. | Lee, Suzee E. | Klein, Eric | Huang, Alden Y. | Sears, Renee | Lane, Jessica R. | Karydas, Anna M. | Kenet, Robert O. | Biernat, Jacek | Wang, Li-San | Cotman, Carl W. | DeCarli, Charles S. | Levey, Allan I. | Ringman, John M. | Mendez, Mario F. | Chui, Helena C. | Le Ber, Isabelle | Brice, Alexis | Lupton, Michelle K. | Preza, Elisavet | Lovestone, Simon | Powell, John | Graff-Radford, Neill | Petersen, Ronald C. | Boeve, Bradley F. | Lippa, Carol F. | Bigio, Eileen H. | Mackenzie, Ian | Finger, Elizabeth | Kertesz, Andrew | Caselli, Richard J. | Gearing, Marla | Juncos, Jorge L. | Ghetti, Bernardino | Spina, Salvatore | Bordelon, Yvette M. | Tourtellotte, Wallace W. | Frosch, Matthew P. | Vonsattel, Jean Paul G. | Zarow, Chris | Beach, Thomas G. | Albin, Roger L. | Lieberman, Andrew P. | Lee, Virginia M. | Trojanowski, John Q. | Van Deerlin, Vivianna M. | Bird, Thomas D. | Galasko, Douglas R. | Masliah, Eliezer | White, Charles L. | Troncoso, Juan C. | Hannequin, Didier | Boxer, Adam L. | Geschwind, Michael D. | Kumar, Satish | Mandelkow, Eva-Maria | Wszolek, Zbigniew K. | Uitti, Ryan J. | Dickson, Dennis W. | Haines, Jonathan L. | Mayeux, Richard | Pericak-Vance, Margaret A. | Farrer, Lindsay A. | Ross, Owen A. | Rademakers, Rosa | Schellenberg, Gerard D. | Miller, Bruce L. | Mandelkow, Eckhard | Geschwind, Daniel H.
Human Molecular Genetics  2012;21(15):3500-3512.
Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects.
Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6–5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3–4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated.
doi:10.1093/hmg/dds161
PMCID: PMC3392107  PMID: 22556362
19.  Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons 
Acta Neuropathologica  2013;126(3):385-399.
The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had >1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization, two iPSC lines from each subject were selected, differentiated into postmitotic neurons, and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs, iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover, repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-013-1149-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-013-1149-y
PMCID: PMC3753484  PMID: 23836290
ALS; Autophagy; C9ORF72; FTD; Hexanucleotide repeats; iPSCs; Neurodegeneration; Neurons; p62; RAN translation; RNA foci
20.  Medial Versus Lateral Frontal Lobe Contributions to Voluntary Saccade Control as Revealed by the Study of Patients with Frontal Lobe Degeneration 
Deficits in the ability to suppress automatic behaviors lead to impaired decision making, aberrant motor behavior, and impaired social function in humans with frontal lobe neurodegeneration. We have studied patients with different patterns of frontal lobe dysfunction resulting from frontotemporal lobar degeneration or Alzheimer's disease, investigating their ability to perform visually guided saccades and smooth pursuit eye movements and to suppress visually guided saccades on the antisaccade task. Patients with clinical syndromes associated with dorsal frontal lobe damage had normal visually guided saccades but were impaired relative to other patients and control subjects in smooth pursuit eye movements and on the antisaccade task. The percentage of correct antisaccade responses was correlated with neuropsychological measures of frontal lobe function and with estimates of frontal lobe gray matter volume based on analyses of structural magnetic resonance images. After controlling for age, gender, cognitive status, and potential interactions between disease group and oculomotor function, an unbiased voxel-based morphometric analysis identified the volume of a segment of the right frontal eye field (FEF) as positively correlated with antisaccade performance (less volume equaled lower percentage of correct responses) but not with either pursuit performance or antisaccade or visually guided saccade latency or gain. In contrast, the volume of the presupplementary motor area (pre-SMA) and a portion of the supplementary eye fields correlated with antisaccade latency (less volume equaled shorter latency) but not with the percentage of correct responses. These results suggest that integrity of the presupplementary motion area/ supplementary eye fields is critical for supervisory processes that slow the onset of saccades, facilitating voluntary saccade targeting decisions that rely on the FEF.
doi:10.1523/JNEUROSCI.0549-06.2006
PMCID: PMC2551317  PMID: 16763044
antisaccade; smooth pursuit; frontotemporal lobar degeneration; presupplementary motor area; supplementary eye field; frontal eye field; brain volume
21.  Oculomotor function in frontotemporal lobar degeneration, related disorders and Alzheimer's disease 
Brain  2008;131(5):1268-1281.
Frontotemporal lobar degeneration (FTLD) often overlaps clinically with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP), both of which have prominent eye movement abnormalities. To investigate the ability of oculomotor performance to differentiate between FTLD, Alzheimer's disease, CBS and PSP, saccades and smooth pursuit were measured in three FTLD subtypes, including 24 individuals with frontotemporal dementia (FTD), 19 with semantic dementia (SD) and six with progressive non-fluent aphasia (PA), as compared to 28 individuals with Alzheimer's disease, 15 with CBS, 10 with PSP and 27 control subjects. Different combinations of oculomotor abnormalities were identified in all clinical syndromes except for SD, which had oculomotor performance that was indistinguishable from age-matched controls. Only PSP patients displayed abnormalities in saccade velocity, whereas abnormalities in saccade gain were observed in PSP > CBS > Alzheimer's disease subjects. All patient groups except those with SD were impaired on the anti-saccade task, however only the FTLD subjects and not Alzheimer's disease, CBS or PSP groups, were able to spontaneously self-correct anti-saccade errors as well as controls. Receiver operating characteristic statistics demonstrated that oculomotor findings were superior to neuropsychological tests in differentiating PSP from other disorders, and comparable to neuropsychological tests in differentiating the other patient groups. These data suggest that oculomotor assessment may aid in the diagnosis of FTLD and related disorders.
doi:10.1093/brain/awn047
PMCID: PMC2367697  PMID: 18362099
oculomotor; frontotemporal lobar degeneration; corticobasal syndrome; progressive supranuclear palsy; Alzheimer's disease
22.  The chromosome 9 ALS and FTD locus is probably derived from a single founder 
Neurobiology of Aging  2011;33(1):209.e3-209.e8.
We and others have recently reported an association between ALS and single nucleotide polymorphisms on chromosome 9p21 in several populations. Here we show that the associated haplotype is the same in all populations and that several families previously shown to have genetic linkage to this region also share this haplotype. The most parsimonious explanation of these data is that there is a single founder for this form of disease.
doi:10.1016/j.neurobiolaging.2011.08.005
PMCID: PMC3312749  PMID: 21925771
Genetics; amyotrophic lateral sclerosis; frontotemporal dementia; Finland
23.  Behavioral-variant frontotemporal dementia with corticobasal degeneration pathology: Phenotypic comparison to bvFTD with Pick’s disease 
Patients with corticobasal degeneration (CBD) pathology present with diverse clinical syndromes also associated with other neuropathologies, including corticobasal syndrome, progressive nonfluent aphasia, and an Alzheimer’s-type dementia. Some present with behavioral variant frontotemporal dementia (bvFTD), though this subtype still requires more detailed phenotypic characterization. All patients with CBD pathology and clinical assessment were reviewed (N=17) and selected if they initially met criteria for bvFTD [bvFTD(CBD): N=5]. Available bvFTD patients with Pick’s [bvFTD(Pick’s): N=5] were selected as controls. Patients were also compared to healthy older controls [N=53] on neuropsychological and neuroimaging measures. At initial presentation, bvFTD(CBD) showed few neuropsychological or motor differences from bvFTD(Pick’s). Neuropsychiatrically, they were predominantly apathetic with less florid social disinhibition and eating disturbances, and were more anxious than bvFTD(Pick’s) patients. Voxel-based morphometry revealed similar patterns of predominantly frontal atrophy between bvFTD groups, though overall degree of atrophy was less severe in bvFTD(CBD), who also showed comparative preservation of the frontoinsular rim, with dorsal > ventral frontal atrophy, and sparing of temporal and parietal structures relative to bvFTD(Pick’s) patients. Despite remarkable overlap between the two patient types, bvFTD patients with underlying CBD pathology show subtle clinical features that may distinguish them from patients with Pick’s disease neuropathology.
doi:10.1007/s12031-011-9615-2
PMCID: PMC3208125  PMID: 21881831
Corticobasal degeneration; frontotemporal dementia; behavior; neuropsychiatry; neuropsychology; neuropathology
24.  Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis 
Neuron  2011;72(2):245-256.
SUMMARY
Several families have been reported with autosomal dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here we report an expansion of a non-coding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43 based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (22.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS.
doi:10.1016/j.neuron.2011.09.011
PMCID: PMC3202986  PMID: 21944778
25.  Practical utility of amyloid and FDG-PET in an academic dementia center 
Neurology  2014;82(3):230-238.
Objective:
To evaluate the effect of amyloid imaging on clinical decision making.
Methods:
We conducted a retrospective analysis of 140 cognitively impaired patients (mean age 65.0 years, 46% primary β-amyloid (Aβ) diagnosis, mean Mini-Mental State Examination 22.3) who underwent amyloid (Pittsburgh compound B [PiB]) PET as part of observational research studies and were evaluated clinically before and after the scan. One hundred thirty-four concurrently underwent fluorodeoxyglucose (FDG)-PET. We assessed for changes between the pre- and post-PET clinical diagnosis (from Aβ to non-Aβ diagnosis or vice versa) and Alzheimer disease treatment plan. The association between PiB/FDG results and changes in management was evaluated using χ2 and multivariate logistic regression. Postmortem diagnosis was available for 24 patients (17%).
Results:
Concordance between scan results and baseline diagnosis was high (PiB 84%, FDG 82%). The primary diagnosis changed after PET in 13/140 patients (9%) overall but in 5/13 (38%) patients considered pre-PET diagnostic dilemmas. When examined independently, discordant PiB and discordant FDG were both associated with diagnostic change (unadjusted p < 0.0001). However, when examined together in a multivariate logistic regression, only discordant PiB remained significant (adjusted p = 0.00013). Changes in treatment were associated with discordant PiB in patients with non-Aβ diagnoses (adjusted p = 0.028), while FDG had no effect on therapy. Both PiB (96%) and FDG (91%) showed high agreement with autopsy diagnosis.
Conclusions:
PET had a moderate effect on clinical outcomes. Discordant PiB had a greater effect than discordant FDG, and influence on diagnosis was greater than on treatment. Prospective studies are needed to better characterize the clinical role of amyloid PET.
doi:10.1212/WNL.0000000000000032
PMCID: PMC3902757  PMID: 24353340

Results 1-25 (36)