PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis 
Neuron  2011;72(2):245-256.
SUMMARY
Several families have been reported with autosomal dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here we report an expansion of a non-coding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43 based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (22.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS.
doi:10.1016/j.neuron.2011.09.011
PMCID: PMC3202986  PMID: 21944778
2.  Ataxin-2 repeat-length variation and neurodegeneration 
Human Molecular Genetics  2011;20(16):3207-3212.
Expanded glutamine repeats of the ataxin-2 (ATXN2) protein cause spinocerebellar ataxia type 2 (SCA2), a rare neurodegenerative disorder. More recent studies have suggested that expanded ATXN2 repeats are a genetic risk factor for amyotrophic lateral sclerosis (ALS) via an RNA-dependent interaction with TDP-43. Given the phenotypic diversity observed in SCA2 patients, we set out to determine the polymorphic nature of the ATXN2 repeat length across a spectrum of neurodegenerative disorders. In this study, we genotyped the ATXN2 repeat in 3919 neurodegenerative disease patients and 4877 healthy controls and performed logistic regression analysis to determine the association of repeat length with the risk of disease. We confirmed the presence of a significantly higher number of expanded ATXN2 repeat carriers in ALS patients compared with healthy controls (OR = 5.57; P= 0.001; repeat length >30 units). Furthermore, we observed significant association of expanded ATXN2 repeats with the development of progressive supranuclear palsy (OR = 5.83; P= 0.004; repeat length >30 units). Although expanded repeat carriers were also identified in frontotemporal lobar degeneration, Alzheimer's and Parkinson's disease patients, these were not significantly more frequent than in controls. Of note, our study identified a number of healthy control individuals who harbor expanded repeat alleles (31–33 units), which suggests caution should be taken when attributing specific disease phenotypes to these repeat lengths. In conclusion, our findings confirm the role of ATXN2 as an important risk factor for ALS and support the hypothesis that expanded ATXN2 repeats may predispose to other neurodegenerative diseases, including progressive supranuclear palsy.
doi:10.1093/hmg/ddr227
PMCID: PMC3140823  PMID: 21610160
3.  Mutations in the colony stimulating factor 1 receptor (CSF1R) cause hereditary diffuse leukoencephalopathy with spheroids 
Nature Genetics  2011;44(2):200-205.
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal dominantly inherited central nervous system white matter disease with variable clinical presentations including personality and behavioral changes, dementia, depression, parkinsonism, seizures, and others1,2. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor receptor 1 (encoded by CSF1R) in 14 families affected by HDLS. In one kindred, the de novo occurrence of the mutation was confirmed. Follow-up sequencing analyses identified an additional CSF1R mutation in a patient clinically diagnosed with corticobasal syndrome (CBS). In vitro, CSF-1 stimulation resulted in the rapid autophosphorylation of selected tyrosine-residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from a partial loss of CSF1R function. Since CSF1R is a critical mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.
doi:10.1038/ng.1027
PMCID: PMC3267847  PMID: 22197934
4.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 
Brain  2012;135(3):765-783.
Numerous kindreds with familial frontotemporal dementia and/or amyotrophic lateral sclerosis have been linked to chromosome 9, and an expansion of the GGGGCC hexanucleotide repeat in the non-coding region of chromosome 9 open reading frame 72 has recently been identified as the pathogenic mechanism. We describe the key characteristics in the probands and their affected relatives who have been evaluated at Mayo Clinic Rochester or Mayo Clinic Florida in whom the hexanucleotide repeat expansion were found. Forty-three probands and 10 of their affected relatives with DNA available (total 53 subjects) were shown to carry the hexanucleotide repeat expansion. Thirty-six (84%) of the 43 probands had a familial disorder, whereas seven (16%) appeared to be sporadic. Among examined subjects from the 43 families (n = 63), the age of onset ranged from 33 to 72 years (median 52 years) and survival ranged from 1 to 17 years, with the age of onset <40 years in six (10%) and >60 in 19 (30%). Clinical diagnoses among examined subjects included behavioural variant frontotemporal dementia with or without parkinsonism (n = 30), amyotrophic lateral sclerosis (n = 18), frontotemporal dementia/amyotrophic lateral sclerosis with or without parkinsonism (n = 12), and other various syndromes (n = 3). Parkinsonism was present in 35% of examined subjects, all of whom had behavioural variant frontotemporal dementia or frontotemporal dementia/amyotrophic lateral sclerosis as the dominant clinical phenotype. No subject with a diagnosis of primary progressive aphasia was identified with this mutation. Incomplete penetrance was suggested in two kindreds, and the youngest generation had significantly earlier age of onset (>10 years) compared with the next oldest generation in 11 kindreds. Neuropsychological testing showed a profile of slowed processing speed, complex attention/executive dysfunction, and impairment in rapid word retrieval. Neuroimaging studies showed bilateral frontal abnormalities most consistently, with more variable degrees of parietal with or without temporal changes; no case had strikingly focal or asymmetric findings. Neuropathological examination of 14 patients revealed a range of transactive response DNA binding protein molecular weight 43 pathology (10 type A and four type B), as well as ubiquitin-positive cerebellar granular neuron inclusions in all but one case. Motor neuron degeneration was detected in nine patients, including five patients without ante-mortem signs of motor neuron disease. While variability exists, most cases with this mutation have a characteristic spectrum of demographic, clinical, neuropsychological, neuroimaging and especially neuropathological findings.
doi:10.1093/brain/aws004
PMCID: PMC3286335  PMID: 22366793
frontotemporal dementia; amyotrophic lateral sclerosis; motor neuron disease; TDP-43; neurogenetics; chromosome 9
5.  Prominent Phenotypic Variability Associated with Mutations in Progranulin 
Neurobiology of aging  2007;30(5):739-751.
Mutations in progranulin (PGRN) are associated with frontotemporal dementia with or without parkinsonism. We describe the prominent phenotypic variability within and among eight kindreds evaluated at Mayo Clinic Rochester and/or Mayo Clinic Jacksonville in whom mutations in PGRN were found. All available clinical, genetic, neuroimaging and neuropathologic data was reviewed. Age of onset ranged from 49 to 88 years and disease duration ranged from 1 to 14 years. Clinical diagnoses included frontotemporal dementia (FTD), primary progressive aphasia, FTD with parkinsonism, parkinsonism, corticobasal syndrome, Alzheimer’s disease, amnestic mild cognitive impairment, and others. One kindred exhibited maximal right cerebral hemispheric atrophy in all four affected individuals, while another had maximal left hemisphere involvement in all three of the affected. Neuropathologic examination of 13 subjects revealed frontotemporal lobar degeneration with ubiquitin-positive inclusions plus neuronal intranuclear inclusions in all cases. Age of onset, clinical phenotypes and MRI findings associated with most PGRN mutations varied significantly both within and among kindreds. Some kindreds with PGRN mutations exhibited lateralized topography of degeneration across all affected individuals.
doi:10.1016/j.neurobiolaging.2007.08.022
PMCID: PMC3164546  PMID: 17949857
Frontotemporal dementia; FTDP-17; Progranulin; PGRN; MRI
6.  Alzheimer's Disease-Like Phenotype Associated With the c.154delA Mutation in Progranulin 
Archives of neurology  2010;67(2):171-177.
Objective
To characterize a kindred with a familial neurodegenerative disorder associated with a mutation in progranulin (PGRN), emphasizing the unique clinical features in this kindred.
Design
Clinical, radiologic, pathologic, and genetic characterization of a kindred with a familial neurodegenerative disorder.
Setting
Multispecialty group academic medical center.
Patients
Affected members of a kindred with dementia +/- parkinsonism associated with a unique mutation in PGRN.
Main Outcome Measure
Genotype-phenotype correlation.
Results
Ten affected individuals were identified, among whom six presented with initial amnestic complaints resulting in initial diagnoses of AD or amnestic mild cognitive impairment (MCI). A minority of individuals presented with features characteristic of FTD. The ages of onset of generation II (mean 75.8 years, range 69-80 years) were far greater than those of generation III (mean 60.7 years, range 55-66 years). The pattern of cerebral atrophy varied widely among affected individuals. Neuropathology in six individuals showed frontotemporal lobar degeneration with ubiquitin positive neuronal cytoplasmic and intranuclear inclusions (FTLD-U + NII). PGRN analysis revealed a single base pair deletion in exon 2 (c.154delA), causing a frameshift (p.Thr52Hisfs×2) and therefore creation of a premature termination codon and likely null allele.
Conclusions
We describe a large kindred in which the majority of affected individuals had clinical presentations resembling AD or amnestic MCI in association with a mutation in PGRN and underlying FTLD-U + NII neuropathology. This is in distinct contrast to previously reported kindreds, where clinical presentations have typically been within the spectrum of FTLD. The basis for the large difference in age of onset between generations will require further study.
doi:10.1001/archneurol.2010.113
PMCID: PMC2902004  PMID: 20142525
MRI; progranulin; frontotemporal dementia; PGRN
7.  Voxel-based morphometry in frontotemporal lobar degeneration with ubiquitin-positive inclusions with and without progranulin mutations 
Archives of neurology  2007;64(3):371-376.
Background
Mutations in the progranulin gene (PGRN) have recently been identified as a cause of frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) in some families.
Objective
To determine whether there is a difference in the patterns of atrophy in cases with FTLD-U with and without a mutation in PGRN.
Design
Case control study
Setting
Brain bank of a tertiary care medical center
Patients
All subjects that had screened positive for mutations in PGRN and had a volumetric MRI were identified (n=8, PGRN (+)). Subjects were then matched by clinical diagnosis to a group of eight subjects with a pathological diagnosis of FTLD-U that had screened negative for mutations in PGRN (PGRN (−)). All subjects were then age and gender-matched to a control subject.
Main outcome Measures
Voxel-based morphometry was used to assess the patterns of grey matter atrophy in the PGRN (+) and (−) groups compared to controls, and compared to each other.
Results
The PGRN (+) group showed a widespread and severe pattern of grey matter loss predominantly affecting the frontal, temporal and parietal lobes. In comparison, the PGRN (−) group showed a less severe pattern of loss restricted mainly to the temporal and frontal lobes. On direct comparison the PGRN (+) group showed greater loss in the frontal and parietal lobes compared to the PGRN (−) group.
Conclusions
This study suggests that PGRN mutations may be associated with a specific and severe pattern of cerebral atrophy in subjects with FTLD-U.
doi:10.1001/archneur.64.3.371
PMCID: PMC2752412  PMID: 17353379
Frontotemporal dementia; Voxel-based morphometry; Ubiquitin; Dentate; Progranulin
8.  Early Onset Alzheimer’s Disease with Spastic Paraparesis, Dysarthria and Seizures and N135S Mutation in PSEN1 
Objective
Early onset familial Alzheimer’s disease (EOFAD) can be caused by mutations in genes for amyloid precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2). There is considerable phenotypic variability in EOFAD, including some patients with spastic paraparesis. The objective is to describe clinical and neuropathologic features of a family with a PSEN1 mutation that has been reported previously, without autopsy confirmation, in a single Greek family whose affected members presented with memory loss in their thirties, as well as variable limb spasticity and seizures.
Methods
We prospectively evaluated two children (son and daughter) with EOFAD and reviewed medical records on their mother. Archival material from the autopsy of the mother was reviewed and postmortem studies were performed on the brain of the daughter.
Results
All three individuals in this family had disease onset in their thirties, with cognitive deficits in multiple domains, including memory, language and attention, as well as less common features such as spastic dysarthria, limb spasticity and seizures. At autopsy both the mother and her daughter had pathologic findings of AD, as well as histological evidence of corticospinal tract degeneration. Genetic studies revealed a mutation in PSEN1 leading to an asparagine to serine substitution at amino acid residue 135 (N135S) in presenilin-1.
Conclusions
This is the first description of neuropathologic findings in EOFAD due to N135S PSEN1 mutation. The clinical phenotype was remarkable for spastic dysarthria, limb spasticity and seizures, in addition to more typical features of EOFAD.
doi:10.1097/WAD.0b013e3181732399
PMCID: PMC2750842  PMID: 18580586
Alzheimer disease; Genetics; Neuropathology; Presenilin; Spasticity
9.  CHOLESTEROL-RELATED GENETIC RISK SCORES ARE ASSOCIATED WITH HYPOMETABOLISM IN ALZHEIMER’S-AFFECTED BRAIN REGIONS 
NeuroImage  2008;40(3):1214-1221.
We recently implicated a cluster of nine single nucleotide polymorphisms from seven cholesterol-related genes in the risk of Alzheimer’s disease (AD) in a European cohort, and we proposed calculating an aggregate cholesterol-related genetic score (CREGS) to characterize a person’s risk. In a separate study, we found that apolipoprotein E (APOE) ε4 gene dose, an established AD risk factor, was correlated with fluorodeoxyglucose (FDG) positron emission tomography (PET) measurements of hypometabolism in AD-affected brain regions in a cognitively normal American cohort, and we proposed using PET as a presymptomatic endophenotype to help assess putative modifiers of AD risk. Thus, the objective in the present study is to determine whether CREGS is related to PET measurements of hypometabolism in AD-affected brain regions. DNA and PET data from 141 cognitively normal late middle-aged APOE ε4 homozygotes, heterozygotes and non-carriers were analyzed to evaluate the relationship between CREGS and regional PET measurements. Cholesterol-related genetic risk scores were associated with hypometabolism in AD-affected brain regions, even when controlling for the effects of APOE ε4 gene dose. The results support the role of cholesterol-related genes in the predisposition to AD, and support the value of neuroimaging in the presymptomatic assessment of putative modifiers of AD risk.
doi:10.1016/j.neuroimage.2007.12.066
PMCID: PMC2441925  PMID: 18280754
Alzheimer’s Disease; Genetics; Cholesterol; Positron Emission Tomography; Endophenotype
10.  Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD 
BMC Neurology  2006;6:44.
Background
A new locus for amyotrophic lateral sclerosis – frontotemporal dementia (ALS-FTD) has recently been ascribed to chromosome 9p.
Methods
We identified chromosome 9p segregating haplotypes within two families with ALS-FTD (F476 and F2) and undertook mutational screening of candidate genes within this locus.
Results
Candidate gene sequencing at this locus revealed the presence of a disease segregating stop mutation (Q342X) in the intraflagellar transport 74 (IFT74) gene in family 476 (F476), but no mutation was detected within IFT74 in family 2 (F2). While neither family was sufficiently informative to definitively implicate or exclude IFT74 mutations as a cause of chromosome 9-linked ALS-FTD, the nature of the mutation observed within F476 (predicted to truncate the protein by 258 amino acids) led us to sequence the open reading frame of this gene in a large number of ALS and FTD cases (n = 420). An additional sequence variant (G58D) was found in a case of sporadic semantic dementia. I55L sequence variants were found in three other unrelated affected individuals, but this was also found in a single individual among 800 Human Diversity Gene Panel samples.
Conclusion
Confirmation of the pathogenicity of IFT74 sequence variants will require screening of other chromosome 9p-linked families.
doi:10.1186/1471-2377-6-44
PMCID: PMC1764752  PMID: 17166276
11.  Apolipoprotein epsilon4 allele frequency in young Africans of Ugandan descent versus African Americans. 
Through its role in lipid metabolism, Apolipoprotein epsilon4 (ApoE4) may affect "brain repair" in stroke, brain hemorrhage, Alzheimer's disease, and other brain injury syndromes for which African Americans may have greater morbidity and mortality. Cross-cultural evaluations of these and other genetic factors may provide insight on possible ethnic differences in risk of morbidity to acute central nervous system (CNS) injury and chronic neurodegenerative processes. As an initial step toward expanding knowledge of ApoE allele frequencies for persons of African descent, we compared ApoE genotype of a group of 70 young Ugandans to 59 (subset of a larger group of 342 African Americans of all ages) age-matched African Americans and to published frequencies for Caucasians and Asians. We found that the ApoE4 and epsilon2 alleles are more frequent in Ugandans (U) than Caucasians (C) or Asians (A) with corresponding alleles showing significant elevations of epsilon2 (U 15.71%, C 8.40%, A 4.20%) and 14 (U 25%, C 13.70%, A 8.90%) (p < .001). Comparing the differences between Ugandans and age-appropriate African Americans (AA) was not statically significant, but this outcome may be due to small sample size. These results provide the only published ApoE frequencies for Ugandans and the complete set of data provides the largest published community group of ApoE frequencies for African Americans.
PMCID: PMC2594366  PMID: 12656452

Results 1-11 (11)