Search tips
Search criteria

Results 1-25 (151)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Gene Transfer of Human Apoe Isoforms Results in Differential Modulation of Amyloid Deposition and Neurotoxicity in Mouse Brain 
Science translational medicine  2013;5(212):212ra161.
Inheritance of the ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor associated with the sporadic form of Alzheimer's disease (AD), whereas the rare APOE ε2 allele has the opposite effect. However, the mechanisms whereby APOE confers risk and protection remain uncertain. We used a gene transfer approach to bathe the cortex of amyloid plaque–bearing transgenic mice with virally expressed human APOE. We monitored amyloid-β (Aβ) with multiphoton imaging, in vivo microdialysis, and postmortem array tomography to study the kinetics of human APOE-mediated changes in Aβ-related neurotoxicity in a mouse model of AD. We observed that human APOE4 increased the concentrations of oligomeric Aβ within the interstitial fluid and exacerbated plaque deposition; the converse occurred after exposure to human APOE2. Peri-plaque synapse loss and dystrophic neurites were also worsened by APOE4 or attenuated by APOE2. Egress of Aβ from the central nervous system (CNS) into the plasma was diminished by APOE3 and APOE4 compared to APOE2, in accord with isoform-specific retention of Aβ in the CNS. Overall, our data show a differential effect of human APOE isoforms on amyloid deposition and clearance in transgenic mice and, more importantly, on Aβ-mediated synaptotoxicity. These results suggest that the APOE genetic risk is mediated by Aβ, and that therapeutic approaches aimed at decreasing APOE4, or increasing APOE2, may be beneficial in AD.
PMCID: PMC4334150  PMID: 24259049
2.  Tau - amyloid interactions in the rTgTauEC model of early Alzheimer’s disease suggest amyloid induced disruption of axonal projections and exacerbated axonal pathology 
The Journal of comparative neurology  2013;521(18):10.1002/cne.23411.
Early observations of the patterns of neurofibrillary tangles and amyloid plaques in Alzheimer’s disease suggested a hierarchical vulnerability of neurons for tangles, and a widespread nonspecific pattern of plaques that nonetheless seemed to correlate with the terminal zone of tangle bearing neurons in some instances. The first neurofibrillary cortical lesions in Alzheimer’s disease occur in the entorhinal cortex, thereby disrupting the origin of the perforant pathway projection to the hippocampus, and amyloid deposits are often found in the molecular layer of the dentate gyrus, which is the terminal zone of the entorhinal cortex. We have modeled these anatomical changes in a transgenic mouse model that overexpresses both P301L tau (uniquely in the medial entorhinal cortex), and mutant APP/PS1 (in a widespread distribution), to examine the anatomical consequences of early tangles, plaques, or the combination. We find that tau uniformly occupies the terminal zone of the perforant pathway in tau expressing mice. By contrast, the addition of amyloid deposits in this area leads to disruption of the perforant pathway terminal zone and apparent aberrant distribution of tau containing axons. Moreover, human P301L tau containing axons appear to increase the extent of dystrophic axons around plaques. Thus the presence of amyloid deposits in the axonal terminal zone of pathological tau containing neurons profoundly impacts their normal connectivity.
PMCID: PMC3797265  PMID: 23839581
Van Hoesen; Alzheimer’s disease; perforant pathway
3.  Examination of the Clinicopathologic Continuum of Alzheimer Disease in the Autopsy Cohort of the National Alzheimer Coordinating Center 
To test the hypothesis that Alzheimer disease (AD) is a clinical and pathologic continuum between normal aging and end-stage dementia, we selected a convenience sample of subjects from the National Alzheimer Coordinating Center 2005 to 2012 autopsy cohort (n = 2,083) with the last clinical evaluation within 2 years before autopsy and no other primary neuropathologic diagnosis. Demographic and neuropathologic characteristics were correlated with the Clinical Dementia Rating–Sum of Boxes in the 835 subjects meeting these criteria. Both neuritic plaques and neurofibrillary tangles independently predicted Clinical Dementia Rating–Sum of Boxes. Severe small-vessel disease, severe amyloid angiopathy, and hippocampal sclerosis were also independently associated with the degree of cognitive impairment. By contrast, education was a strong independent protective factor against cognitive deficits. The cause of mild to moderate dementia remained uncertain in 14% of the patients. Inverse probability weighting suggests the generalizability of these results to nonautopsied cohorts. These data indicate that plaques and tangles independently contribute to cognitive impairment, that concurrent vascular disease strongly correlates with cognitive dysfunction even in a sample selected to represent the AD pathologic continuum, and that education further modifies clinical expression. Thus, multiple concomitant etiologies of brain damage and premorbid characteristics contribute to the uncertainty of AD clinicopathologic correlations based only on tangles and plaques.
PMCID: PMC3962953  PMID: 24226270
Alzheimer disease; Cerebral amyloid angiopathy; Hippocampal sclerosis; Neuritic plaques; Neurofibrillary tangles; Small-vessel disease
4.  Anti-ApoE Antibody Given after Plaque Onset Decreases Aβ Accumulation and Improves Brain Function in a Mouse Model of Aβ Amyloidosis 
The Journal of Neuroscience  2014;34(21):7281-7292.
Apolipoprotein E (apoE) is the strongest known genetic risk factor for late onset Alzheimer's disease (AD). It influences amyloid-β (Aβ) clearance and aggregation, which likely contributes in large part to its role in AD pathogenesis. We recently found that HJ6.3, a monoclonal antibody against apoE, significantly reduced Aβ plaque load when given to APPswe/PS1ΔE9 (APP/PS1) mice starting before the onset of plaque deposition. To determine whether the anti-apoE antibody HJ6.3 affects Aβ plaques, neuronal network function, and behavior in APP/PS1 mice after plaque onset, we administered HJ6.3 (10 mg/kg/week) or PBS intraperitoneally to 7-month-old APP/PS1 mice for 21 weeks. HJ6.3 mildly improved spatial learning performance in the water maze, restored resting-state functional connectivity, and modestly reduced brain Aβ plaque load. There was no effect of HJ6.3 on total plasma cholesterol or cerebral amyloid angiopathy. To investigate the underlying mechanisms of anti-apoE immunotherapy, HJ6.3 was applied to the brain cortical surface and amyloid deposition was followed over 2 weeks using in vivo imaging. Acute exposure to HJ6.3 affected the course of amyloid deposition in that it prevented the formation of new amyloid deposits, limited their growth, and was associated with occasional clearance of plaques, a process likely associated with direct binding to amyloid aggregates. Topical application of HJ6.3 for only 14 d also decreased the density of amyloid plaques assessed postmortem. Collectively, these studies suggest that anti-apoE antibodies have therapeutic potential when given before or after the onset of Aβ pathology.
PMCID: PMC4028501  PMID: 24849360
Alzheimer's; amyloid; antibody; apolipoprotein E
5.  Propagation of tau pathology in Alzheimer’s disease: identification of novel therapeutic targets 
Accumulation and aggregation of the microtubule-associated protein tau are a pathological hallmark of neurodegenerative disorders such as Alzheimer’s disease (AD). In AD, tau becomes abnormally phosphorylated and forms inclusions throughout the brain, starting in the entorhinal cortex and progressively affecting additional brain regions as the disease progresses. Formation of these inclusions is thought to lead to synapse loss and cell death. Tau is also found in the cerebrospinal fluid (CSF), and elevated levels are a biomarker for AD. Until recently, it was thought that the presence of tau in the CSF was due to the passive release of aggregated tau from dead or dying tangle-bearing neurons. However, accumulating evidence from different AD model systems suggests that tau is actively secreted and transferred between synaptically connected neurons. Transgenic mouse lines with localized expression of aggregating human tau in the entorhinal cortex have demonstrated that, as these animals age, tau becomes mislocalized from axons to cell bodies and dendrites and that human tau-positive aggregates form first in the entorhinal cortex and later in downstream projection targets. Numerous in vitro and in vivo studies have provided insight into the mechanisms by which tau may be released and internalized by neurons and have started to provide insight into how tau pathology may spread in AD. In this review, we discuss the evidence for regulated tau release and its specific uptake by neurons. Furthermore, we identify possible therapeutic targets for preventing the propagation of tau pathology, as inhibition of tau transfer may restrict development of tau tangles in a small subset of neurons affected in early stages of AD and therefore prevent widespread neuron loss and cognitive dysfunction associated with later stages of the disease.
PMCID: PMC3978816  PMID: 24152385
6.  Unrecognized vitamin D3 deficiency is common in Parkinson disease 
Neurology  2013;81(17):1531-1537.
To conclusively test for a specific association between the biological marker 25-hydroxy-vitamin D3, a transcriptionally active hormone produced in human skin and liver, and the prevalence and severity of Parkinson disease (PD).
We used liquid chromatography/tandem mass spectrometry to establish an association specifically between deficiency of 25-hydroxy-vitamin D3 and PD in a cross-sectional and longitudinal case-control study of 388 patients (mean Hoehn and Yahr stage of 2.1 ± 0.6) and 283 control subjects free of neurologic disease nested in the Harvard Biomarker Study.
Plasma levels of 25-hydroxy-vitamin D3 were associated with PD in both univariate and multivariate analyses with p values = 0.0034 and 0.047, respectively. Total 25-hydroxy-vitamin D levels, the traditional composite measure of endogenous and exogenous vitamin D, were deficient in 17.6% of patients with PD compared with 9.3% of controls. Low 25-hydroxy-vitamin D3 as well as total 25-hydroxy-vitamin D levels were correlated with higher total Unified Parkinson’s Disease Rating Scale scores at baseline and during follow-up.
Our study reveals an association between 25-hydroxy-vitamin D3 and PD and suggests that thousands of patients with PD in North America alone may be vitamin D–deficient. This finding has immediate relevance for individual patients at risk of falls as well as public health, and warrants further investigation into the mechanism underlying this association.
PMCID: PMC3888173  PMID: 24068787
7.  Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer’s disease 
The accumulation of neurofibrillary tangles in Alzheimer’s disease (AD) propagates with characteristic spatiotemporal patterns which follow brain network connections, implying trans-synaptic transmission of tauopathy. Since misfolded tau has been shown to transmit across synapses in AD animal models, we hypothesized that synapses in AD patients may contain misfolded tau. By immunofluorescence imaging of bipartite synapses from AD subjects, we detected tau protein in 38.4% of presynaptic and 50.9% of postsynaptic terminals. The pre/post distribution for hyperphosphorylated tau was 26.9%/30.7%, and for misfolded tau 18.3%/19.3%. In the temporal cortex, microscopic aggregates of tau, containing ultra-stable oligomers, were estimated to accumulate within trillions of synapses, outnumbering macroscopic tau aggregates such as tangles by 10000 fold. Non-demented elderly also showed considerable synaptic tau hyperphosphorylation and some misfolding, implicating the synapse as one of the first subcellular compartments affected by tauopathy. Misfolding of tau protein appeared to occur in situ inside synaptic terminals, without mislocalizing or mistrafficking. Misfolded tau at synapses may represent early signs of neuronal degeneration, mediators of synaptotoxicity, and anatomical substrates for transmitting tauopathy, but its actual role in these processes remain to be elucidated.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-014-0146-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4209049  PMID: 25330988
8.  High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types 
To retrospectively determine the frequency of N-Methyl-D-Aspartate (NMDA) receptor (NMDAR) autoantibodies in patients with different forms of dementia.
Clinical characterization of 660 patients with dementia, neurodegenerative disease without dementia, other neurological disorders and age-matched healthy controls combined with retrospective analysis of serum or cerebrospinal fluid (CSF) for the presence of NMDAR antibodies. Antibody binding to receptor mutants and the effect of immunotherapy were determined in a subgroup of patients.
Serum NMDAR antibodies of IgM, IgA, or IgG subtypes were detected in 16.1% of 286 dementia patients (9.5% IgM, 4.9% IgA, and 1.7% IgG) and in 2.8% of 217 cognitively healthy controls (1.9% IgM and 0.9% IgA). Antibodies were rarely found in CSF. The highest prevalence of serum antibodies was detected in patients with “unclassified dementia” followed by progressive supranuclear palsy, corticobasal syndrome, Parkinson’s disease-related dementia, and primary progressive aphasia. Among the unclassified dementia group, 60% of 20 patients had NMDAR antibodies, accompanied by higher frequency of CSF abnormalities, and subacute or fluctuating disease progression. Immunotherapy in selected prospective cases resulted in clinical stabilization, loss of antibodies, and improvement of functional imaging parameters. Epitope mapping showed varied determinants in patients with NMDAR IgA-associated cognitive decline.
Serum IgA/IgM NMDAR antibodies occur in a significant number of patients with dementia. Whether these antibodies result from or contribute to the neurodegenerative disorder remains unknown, but our findings reveal a subgroup of patients with high antibody levels who can potentially benefit from immunotherapy.
PMCID: PMC4241809  PMID: 25493273
9.  The Challenge of Connecting the Dots in the B.R.A.I.N 
Neuron  2013;80(2):10.1016/j.neuron.2013.09.008.
The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative has focused scientific attention on the necessary tools to understand the human brain and mind. Here, we outline our collective vision for what we can achieve within a decade with properly targeted efforts, and discuss likely technological deliverables and neuroscience progress.
PMCID: PMC3864648  PMID: 24139032
10.  Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV 
Mucolipidosis IV (MLIV) is caused by mutations in the gene MCOLN1. Patients with MLIV have severe neurologic deficits and very little is known about the brain pathology in this lysosomal disease. Using an accurate mouse model of mucolipidosis IV, we observed early behavioral deficits which were accompanied by activation of microglia and astrocytes. The glial activation that persisted during the course of disease was not accompanied by neuronal loss even at the late stage. In vivo [Ca2+]-imaging revealed no changes in resting [Ca2+] levels in Mcoln1−/− cortical neurons, implying their physiological health. Despite the absence of neuron loss, we observed alterations in synaptic plasticity, as indicated by elevated paired-pulse facilitation and enhanced long-term potentiation. Myelination deficits and severely dysmorphic corpus callosum were present early and resembled white matter pathology in mucolipidosis IV patients. These results indicate the early involvement of glia, and challenge the traditional view of mucolipidosis IV as an overtly neurodegenerative condition.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-014-0133-7) contains supplementary material, which is available to authorized users.
PMCID: PMC4173007  PMID: 25200117
Mucolipidosis IV; Lysosomal storage disease; Neuropathology; In vivo Ca2+ imaging; Glia
11.  Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias 
PLoS Genetics  2014;10(9):e1004606.
Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias.
Author Summary
Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study (GWAS), as well as an analysis of known genetic risk loci for AD dementia, using data from 4,914 brain autopsies. Genome-wide significance was observed for 7 genes and pathologic features of AD and related diseases. Twelve of the 22 genetic risk loci for clinically-defined AD dementia were confirmed in our pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for hallmark pathologic features of AD were strongly positive and linear. Our study discovered new genetic associations with specific pathologic features and aligned known genetic risk for AD dementia with specific pathologic changes in a large brain autopsy study of AD and related dementias.
PMCID: PMC4154667  PMID: 25188341
12.  Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology 
Brain  2013;136(8):2510-2526.
Clinico-pathological correlation studies and positron emission tomography amyloid imaging studies have shown that some individuals can tolerate substantial amounts of Alzheimer’s pathology in their brains without experiencing dementia. Few details are known about the neuropathological phenotype of these unique cases that might prove relevant to understanding human resilience to Alzheimer’s pathology. We conducted detailed quantitative histopathological and biochemical assessments on brains from non-demented individuals before death whose brains were free of substantial Alzheimer’s pathology, non-demented individuals before death but whose post-mortem examination demonstrated significant amounts of Alzheimer’s changes (‘mismatches’), and demented Alzheimer’s cases. Quantification of amyloid-β plaque burden, stereologically-based counts of neurofibrillary tangles, neurons and reactive glia, and morphological analyses of axons were performed in the multimodal association cortex lining the superior temporal sulcus. Levels of synaptic integrity markers, and soluble monomeric and multimeric amyloid-β and tau species were measured. Our results indicate that some individuals can accumulate equivalent loads of amyloid-β plaques and tangles to those found in demented Alzheimer’s cases without experiencing dementia. Analyses revealed four main phenotypic differences among these two groups: (i) mismatches had striking preservation of neuron numbers, synaptic markers and axonal geometry compared to demented cases; (ii) demented cases had significantly higher burdens of fibrillar thioflavin-S-positive plaques and of oligomeric amyloid-β deposits reactive to conformer-specific antibody NAB61 than mismatches; (iii) strong and selective accumulation of hyperphosphorylated soluble tau multimers into the synaptic compartment was noted in demented cases compared with controls but not in mismatches; and (iv) the robust glial activation accompanying amyloid-β and tau pathologies in demented cases was remarkably reduced in mismatches. Further biochemical measurements of soluble amyloid-β species—monomers, dimers and higher molecular weight oligomers—in total brain homogenates and synaptoneurosomal preparations failed to demonstrate significant differences between mismatches and demented cases. Together, these data suggest that amyloid-β plaques and tangles do not inevitably result in neural system derangement and dementia in all individuals. We identified distinct phenotypic characteristics in the profile of brain fibrillar and soluble amyloid-β and tau accrual and in the glial response that discriminated demented and non-demented individuals with high loads of Alzheimer’s pathology. Amyloid-β deposition in the form of fibrillar plaques and intimately related oligomeric amyloid-β assemblies, hyperphosphorylated soluble tau species localized in synapses, and glial activation emerged in this series as likely mediators of neurotoxicity and altered cognition, providing further insight into factors and pathways potentially involved in human susceptibility or resilience to Alzheimer’s pathological changes.
PMCID: PMC3722351  PMID: 23824488
Alzheimers disease; amyloid pathology; tau pathology; resilience; astrocytes; microglia
13.  The role of clusterin in amyloid-β associated neurodegeneration 
JAMA neurology  2014;71(2):180-187.
Converging evidence indicates that clusterin, a chaperone glycoprotein, influences Alzheimer's disease (AD) neurodegeneration. However, the precise role of clusterin in AD pathogenesis is still not well understood.
To elucidate the relationship between clusterin, amyloid-β (Aβ), p-tau, and rate of brain atrophy over time among non-demented older individuals.
A longitudinal cohort of cognitively normal older participants (HC) and individuals with mild cognitive impairment (MCI) assessed with baseline lumbar puncture and longitudinal structural MRI.
Research centers across the United States and Canada.
We examined 241 non-demented older individuals (91 participants with a Clinical Dementia Rating (CDR) of 0 and 150 individuals with a CDR of 0.5).
Main Outcome Measures
Using linear mixed effects models, we investigated interactions between CSF clusterin, CSF Aβ1-42 and CSF p-tau181p on atrophy rate of the entorhinal cortex and hippocampus.
Across all participants, we found a significant interaction between CSF clusterin and CSF Aβ1-42 on entorhinal cortex atrophy rate, but not on hippocampal atrophy rate. CSF clusterin was associated with entorhinal cortex atrophy rate among CSF Aβ1-42 positive individuals, but not among CSF Aβ1-42 negative individuals. In secondary analyses, we found significant interactions between CSF Aβ1-42 and CSF clusterin and CSF Aβ1-42 and CSF p-tau181p on entorhinal cortex atrophy rate. We found similar results in subgroup analyses within the MCI and HC cohorts.
Conclusions and Relevance
In non-demented older individuals, Aβ-associated volume loss occurs in the presence of elevated clusterin. The effect of clusterin on Aβ-associated brain atrophy is not confounded or explained by p-tau. These findings implicate a potentially important role for clusterin in the earliest stages of the AD neurodegenerative process and suggest independent effects of clusterin and p-tau on Aβ-associated volume loss.
PMCID: PMC4118752  PMID: 24378367
14.  Regional cortical thinning and cerebrospinal biomarkers predict worsening daily functioning across the Alzheimer disease spectrum 
Impairment in instrumental activities of daily living (IADL) heralds the transition from mild cognitive impairment (MCI) to dementia and is a major source of burden for both the patient and caregiver.
To investigate the relationship between IADL and regional cortical thinning and cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers cross-sectionally and longitudinally in clinically normal (CN) elderly, MCI, and mild AD dementia subjects.
Two hundred and twenty nine CN, 395 MCI, and 188 AD dementia subjects participating in the Alzheimer's Disease Neuroimaging Initiative underwent baseline magnetic resonance imaging, baseline lumbar puncture, and clinical assessments, including the Functional Activities Questionnaire used to measure IADL, every 6 to 12 months up to 3 years. General linear regression and mixed effects models were employed.
IADL impairment was associated with the interactions between lower inferior temporal cortical thickness and diagnosis (p<0.0001), greater lateral occipital cortical thickness and diagnosis (p<0.0001), and greater amyloid-beta 1-42 (Aβ1-42) and diagnosis (p=0.0002) at baseline (driven by AD dementia). Lower baseline supramarginal (p=0.02) and inferior temporal (p=0.05) cortical thickness, lower Aβ1-42 (p<0.0001), and greater total tau (t-tau) (p=0.02) were associated with greater rate of IADL impairment over time.
Temporal atrophy is associated with IADL impairment in mild AD dementia at baseline, while baseline parietal and temporal atrophy, lower CSF Aβ1-42, and greater t-tau predict worsening IADL impairment over time across the AD spectrum. These results emphasize the importance of assessing IADL at the stage of MCI and even at the transition from CN to MCI.
PMCID: PMC4111766  PMID: 24685624
Alzheimer's disease; cerebrospinal fluid; instrumental activities of daily living; magnetic resonance imaging; mild cognitive impairment
15.  Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses 
Intraneuronal neurofibrillary tangles (NFTs) – a characteristic pathological feature of Alzheimer’s and several other neurodegenerative diseases – are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.
PMCID: PMC4229905  PMID: 24915991
Alzheimer’s disease; Tau; Neurofibrillary tangles; Arc; Neuronal activity; Activity-dependent expression
16.  APOE ε4 does not modulate amyloid-β associated neurodegeneration in preclinical Alzheimer’s disease 
Background and Purpose
Among cognitively normal older individuals, the relationship between the two hallmark proteins of Alzheimer’s disease (AD), amyloid-β (Aβ) and tau, the ε4 allele of apolipoprotein E (APOE ε4), and neurodegeneration is not well understood.
Materials and Methods
We examined 107 cognitively healthy older adults who underwent longitudinal MR imaging and baseline lumbar puncture. Within the same linear mixed effects model, we concurrently investigated main and interactive effects between APOE ε4 genotype and CSF Aβ1-42, CSF phospo-tau (p-tau181p) and CSF Aβ1-42, and APOE ε4 genotype and CSF p-tau181p on entorhinal cortex atrophy rate. We also examined the relationship between APOE ε4, CSF p-tau181p, and CSF Aβ1-42 on atrophy rate of other AD-vulnerable neuroanatomic regions.
The full model with main and interactive effects demonstrated a significant interaction only between CSF p-tau181p and CSF Aβ1-42 on entorhinal cortex atrophy rate indicating elevated atrophy over time in individuals with increased CSF p-tau181p and decreased CSF Aβ1-42. APOE ε4 genotype was significantly and specifically associated with CSF Aβ1-42. However, the interaction between APOE ε4 genotype and either CSF Aβ1-42 or CSF p-tau181p on entorhinal cortex atrophy rate was not significant. We found similar results in other AD-vulnerable regions.
Based upon our findings and building upon prior experimental evidence, we propose a model of the pathogenic cascade underlying preclinical AD where APOE ε4 primarily influences Alzheimer’s pathology via Aβ-related mechanisms and in turn, Aβ-associated neurodegeneration occurs only in the presence of phospho-tau.
PMCID: PMC4041629  PMID: 22976236
preclinical AD; neurodegeneration; p-tau; amyloid-β; APOE
17.  Differential Relationships of Reactive Astrocytes and Microglia to Fibrillar Amyloid Deposits in Alzheimer Disease 
While it is clear that astrocytes and microglia cluster around dense-core amyloid plaques in Alzheimer disease (AD), whether they are primarily attracted to amyloid deposits or are just reacting to plaque-associated neuritic damage remains elusive. We postulate that astrocytes and microglia may differentially respond to fibrillar amyloid β (Aβ). Therefore, we quantified the size distribution of dense-core Thioflavin-S (ThioS)-positive plaques in the temporal neocortex of 40 AD patients and the microglial and astrocyte responses in their vicinity (≤50 μm), and performed correlations between both measures. As expected, both astrocytes and microglia were clearly spatially associated with ThioS-positive plaques (p = 0.0001, ≤50 μm vs. >50 μm from their edge), but their relationship to ThioS-positive plaque size differed; larger ThioS-positive plaques were associated with more surrounding activated microglia (p = 0.0026), but this effect was not observed with reactive astrocytes. Microglial response to dense-core plaques appears to be proportional to their size, which we postulate reflects a chemotactic effect of Aβ. By contrast, plaque-associated astrocytic response does not correlate with plaque size and seems to parallel the behavior of plaque-associated neuritic damage.
PMCID: PMC3661683  PMID: 23656989
Alzheimer disease; Amyloid plaques; Apolipoprotein E; Astrocytes; Microglia
18.  Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta 
Neuron  2013;78(4):631-643.
The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer’s disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APPSwe/PS1ΔE9/CD33−/− mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD.
PMCID: PMC3706457  PMID: 23623698
19.  Mild to Moderate Alzheimer Dementia with Insufficient Neuropathological Changes 
Annals of neurology  2014;75(4):597-601.
Recently, ∼16% of participants in an anti-Aβ passive immunotherapy trial for mild-to-moderate Alzheimer disease (AD) had a negative baseline amyloid positron emission tomography (PET) scan. Whether they have AD or are AD clinical phenocopies remains unknown. We examined the 2005-2013 National Alzheimer's Coordinating Center autopsy database and found that ∼14% of autopsied subjects clinically diagnosed with mild-to-moderate probable AD have no or sparse neuritic plaques, which would expectedly yield a negative amyloid PET scan. More than half of these “Aβ-negative” subjects have low neurofibrillary tangle Braak stages. These findings support the implementation of a positive amyloid biomarker as an inclusion criterion in future anti-Aβ drug trials.
PMCID: PMC4016558  PMID: 24585367
20.  CSF biomarker variability in the Alzheimer’s Association quality control program 
The cerebrospinal fluid (CSF) biomarkers amyloid beta 1–42, total tau, and phosphorylated tau are used increasingly for Alzheimer’s disease (AD) research and patient management. However, there are large variations in biomarker measurements among and within laboratories.
Data from the first nine rounds of the Alzheimer’s Association quality control program was used to define the extent and sources of analytical variability. In each round, three CSF samples prepared at the Clinical Neurochemistry Laboratory (Mölndal, Sweden) were analyzed by single-analyte enzyme-linked immunosorbent assay (ELISA), a multiplexing xMAP assay, or an immunoassay with electrochemoluminescence detection.
A total of 84 laboratories participated. Coefficients of variation (CVs) between laboratories were around 20% to 30%; within-run CVs, less than 5% to 10%; and longitudinal within-laboratory CVs, 5% to 19%. Interestingly, longitudinal within-laboratory CV differed between biomarkers at individual laboratories, suggesting that a component of it was assay dependent. Variability between kit lots and between laboratories both had a major influence on amyloid beta 1–42 measurements, but for total tau and phosphorylated tau, between-kit lot effects were much less than between-laboratory effects. Despite the measurement variability, the between-laboratory consistency in classification of samples (using prehoc-derived cutoffs for AD) was high (>90% in 15 of 18 samples for ELISA and in 12 of 18 samples for xMAP).
The overall variability remains too high to allow assignment of universal biomarker cutoff values for a specific intended use. Each laboratory must ensure longitudinal stability in its measurements and use internally qualified cutoff levels. Further standardization of laboratory procedures and improvement of kit performance will likely increase the usefulness of CSF AD biomarkers for researchers and clinicians.
PMCID: PMC3707386  PMID: 23622690
Alzheimer’s disease; Cerebrospinal fluid; Biomarkers; External assurance; Quality control; Proficiency testing
21.  Synaptic alterations in the rTg4510 mouse model of tauopathy 
The Journal of comparative neurology  2013;521(6):1334-1353.
Synapse loss, rather than the hallmark amyloid-β (Aβ) plaques or tau filled neurofibrillary tangles (NFT), is considered the most predictive pathological feature associated with cognitive status in the Alzheimer disease (AD) brain. The role of Aβ in synapse loss is well established, but despite data linking tau to synaptic function, the role of tau in synapse loss remains largely undetermined. Here we test the hypothesis that human mutant P301L tau over-expression in a mouse model (rTg4510) will lead to age-dependent synaptic loss and dysfunction. Using array tomography and two methods of quantification (automated, threshold-based counting and a manual stereology based technique) we demonstrate that overall synapse density is maintained in the neuropil, implicating synapse loss commensurate with the cortical atrophy known to occur in this model. Multi-photon in-vivo imaging reveals close to 30% loss of apical dendritic spines of individual pyramidal neurons suggesting these cells may be particularly vulnerable to tau-induced degeneration. Post-mortem, we confirm the presence of tau in dendritic spines of rTg4510-YFP mouse brain by array tomography. These data implicate tau-induced loss of a subset of synapses that may be accompanied by compensatory increases in other synaptic subtypes thereby preserving overall synapse density. Biochemical fractionation of synaptosomes from rTg4510 brain demonstrates a significant decrease in expression of several synaptic proteins, suggesting a functional deficit of remaining synapses in the rTg4510 brain. Together these data show morphological and biochemical synaptic consequences in response to tau over-expression in the rTg4510 mouse model.
PMCID: PMC3725804  PMID: 23047530
Alzheimer Disease; tauopathy; hyperphosphorylated tau; array tomography
22.  Direct Visualization of CHIP-Mediated Degradation of Alpha-Synuclein In Vivo: Implications for PD Therapeutics 
PLoS ONE  2014;9(3):e92098.
Parkinson's disease is a neurodegenerative disorder characterized by Lewy bodies, a pathological hallmark comprised mostly of aggregated alpha synuclein. Accumulating evidence demonstrates the association of smaller oligomeric aggregates to disease etiology and many therapeutic approaches are aimed at inhibiting and reducing the aggregation process. Molecular chaperones and co-chaperones play a key role in protein homeostasis and have potential as therapeutics to inhibit alpha synuclein associated toxicity. Here we use a gene therapy approach to evaluate the applicability of the Hsp70 co-chaperone CHIP (C-terminal Hsp70 interacting protein) as a therapeutic candidate and examine its direct effect on alpha synuclein aggregates in vivo. Utilizing a novel viral vector mediated rat model to directly detect alpha synuclein aggregates, we show that CHIP can mediate the degradation of alpha synuclein aggregates in vivo. However, our studies also reveal that CHIP may potentially degrade tyrosine hydroxylase which would compromise the applicability of CHIP as a therapeutic approach for Parkinson's disease.
PMCID: PMC3963877  PMID: 24664141
23.  Human LilrB2 Is a β-Amyloid Receptor and Its Murine Homolog PirB Regulates Synaptic Plasticity in an Alzheimer’s Model 
Science (New York, N.Y.)  2013;341(6152):10.1126/science.1242077.
Soluble β-amyloid (Aβ) oligomers impair synaptic plasticity and cause synaptic loss associated with Alzheimer’s disease (AD). We report that murine PirB (paired immunoglobulin-like receptor B) and its human ortholog LilrB2 (leukocyte immunoglobulin-like receptor B2), present in human brain, are receptors for Aβ oligomers, with nanomolar affinity. The first two extracellular immunoglobulin (Ig) domains of PirB and LilrB2 mediate this interaction, leading to enhanced cofilin signaling, also seen in human AD brains. In mice, the deleterious effect of Aβ oligomers on hippocampal long-term potentiation required PirB, and in a transgenic model of AD, PirB not only contributed to memory deficits present in adult mice, but also mediated loss of synaptic plasticity in juvenile visual cortex. These findings imply that LilrB2 contributes to human AD neuropathology and suggest therapeutic uses of blocking LilrB2 function.
PMCID: PMC3853120  PMID: 24052308
24.  Engulfment adapter PTB domain containing 1 (GULP1) is a nucleocytoplasmic shuttling protein and transactivationally active together with lowdensity lipoprotein receptor-related protein 1 (LRP1) 
The Biochemical journal  2013;450(2):333-343.
Amyloid-β (A4) precursor protein (APP) and low density lipoprotein receptor-related protein 1 (LRP1) have been implicated in pathogenesis of Alzheimer’s disease (AD). They are functionally linked by Fe65, a phosphotyrosine binding domain (PTB) domain containing adaptor protein that binds to intracellular NPxY-motifs of APP and LRP1, thereby influencing expression levels, cellular trafficking and processing. Additionally, Fe65 has been reported to mediate nuclear signaling in combination with intracellular domains of APP and LRP1. We have previously identified another adaptor protein, engulfment adapter PTB domain containing 1 (GULP1). Here, we characterize and compare nuclear trafficking and transactivation of GULP1 and Fe65 together with APP and LRP1 and report differential nuclear trafficking of adaptors when APP or LRP1 are co-expressed. Observed effects are additionally supported by a reporter plasmid based transactivation assay. Our data indicate that Fe65 might have signaling properties together with APP and LRP1, whereas GULP1 mediates only LRP1 transactivation.
PMCID: PMC3612536  PMID: 23167255
adaptor proteins; signaling; transactivation; amyloid precursor protein
25.  RNA Aptamer Probes as Optical Imaging Agents for the Detection of Amyloid Plaques 
PLoS ONE  2014;9(2):e89901.
Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-Aβ RNA aptamer, β55, which binds amyloid plaques in both ex vivo human Alzheimer’s disease brain tissue and in vivo APP/PS1 transgenic mice. Diffuse β55 positive halos, attributed to oligomeric Aβ, were observed surrounding the methoxy-XO4 positive plaque cores. Dot blots of synthetic Aβ aggregates provide further evidence that β55 binds both fibrillar and non-fibrillar Aβ. The high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to conventional optical imaging probes and reporters.
PMCID: PMC3935954  PMID: 24587111

Results 1-25 (151)