PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (159)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
author:("goat, Alison")
1.  Age-at-Onset in Late Onset Alzheimer Disease is Modified by Multiple Genetic Loci 
JAMA neurology  2014;71(11):1394-1404.
Importance
As APOE locus variants contribute to both risk of late-onset Alzheimer disease and differences in age-at-onset, it is important to know if other established late-onset Alzheimer disease risk loci also affect age-at-onset in cases.
Objectives
To investigate the effects of known Alzheimer disease risk loci in modifying age-at-onset, and to estimate their cumulative effect on age-at-onset variation, using data from genome-wide association studies in the Alzheimer’s Disease Genetics Consortium (ADGC).
Design, Setting and Participants
The ADGC comprises 14 case-control, prospective, and family-based datasets with data on 9,162 Caucasian participants with Alzheimer’s occurring after age 60 who also had complete age-at-onset information, gathered between 1989 and 2011 at multiple sites by participating studies. Data on genotyped or imputed single nucleotide polymorphisms (SNPs) most significantly associated with risk at ten confirmed LOAD loci were examined in linear modeling of AAO, and individual dataset results were combined using a random effects, inverse variance-weighted meta-analysis approach to determine if they contribute to variation in age-at-onset. Aggregate effects of all risk loci on AAO were examined in a burden analysis using genotype scores weighted by risk effect sizes.
Main Outcomes and Measures
Age at disease onset abstracted from medical records among participants with late-onset Alzheimer disease diagnosed per standard criteria.
Results
Analysis confirmed association of APOE with age-at-onset (rs6857, P=3.30×10−96), with associations in CR1 (rs6701713, P=7.17×10−4), BIN1 (rs7561528, P=4.78×10−4), and PICALM (rs561655, P=2.23×10−3) reaching statistical significance (P<0.005). Risk alleles individually reduced age-at-onset by 3-6 months. Burden analyses demonstrated that APOE contributes to 3.9% of variation in age-at-onset (R2=0.220) over baseline (R2=0.189) whereas the other nine loci together contribute to 1.1% of variation (R2=0.198).
Conclusions and Relevance
We confirmed association of APOE variants with age-at-onset among late-onset Alzheimer disease cases and observed novel associations with age-at-onset in CR1, BIN1, and PICALM. In contrast to earlier hypothetical modeling, we show that the combined effects of Alzheimer disease risk variants on age-at-onset are on the scale of, but do not exceed, the APOE effect. While the aggregate effects of risk loci on age-at-onset may be significant, additional genetic contributions to age-at-onset are individually likely to be small.
doi:10.1001/jamaneurol.2014.1491
PMCID: PMC4314944  PMID: 25199842
Alzheimer Disease; Alzheimer Disease Genetics; Alzheimer’s Disease - Pathophysiology; Genetics of Alzheimer Disease; Aging
2.  Variants in two adjacent genes, EGLN2 and CYP2A6, influence smoking behavior related to disease risk via different mechanisms 
Human Molecular Genetics  2013;23(2):555-561.
Genome-wide significant associations with cigarettes per day (CPD) and risk for lung cancer and chronic obstructive pulmonary disease (COPD) were previously reported in a region of 19q13, including CYP2A6 (nicotine metabolism enzyme) and EGLN2 (hypoxia response). The associated single nucleotide polymorphisms (SNPs) were assumed to be proxies for functional variation in CYP2A6. Here, we demonstrate that when CYP2A6 and EGLN2 genotypes are analyzed together, the key EGLN2 variant, rs3733829, is not associated with nicotine metabolism independent of CYP2A6, but is nevertheless independently associated with CPD, and with breath carbon monoxide (CO), a phenotype associated with cigarette consumption and relevant to hypoxia. SNPs in EGLN2 are also associated with nicotine dependence and with smoking efficiency (CO/CPD). These results indicate a previously unappreciated novel mechanism behind genome-wide significant associations with cigarette consumption and disease risk unrelated to nicotine metabolism.
doi:10.1093/hmg/ddt432
PMCID: PMC3869360  PMID: 24045616
3.  Symptom onset in autosomal dominant Alzheimer disease 
Neurology  2014;83(3):253-260.
Objective:
To identify factors influencing age at symptom onset and disease course in autosomal dominant Alzheimer disease (ADAD), and develop evidence-based criteria for predicting symptom onset in ADAD.
Methods:
We have collected individual-level data on ages at symptom onset and death from 387 ADAD pedigrees, compiled from 137 peer-reviewed publications, the Dominantly Inherited Alzheimer Network (DIAN) database, and 2 large kindreds of Colombian (PSEN1 E280A) and Volga German (PSEN2 N141I) ancestry. Our combined dataset includes 3,275 individuals, of whom 1,307 were affected by ADAD with known age at symptom onset. We assessed the relative contributions of several factors in influencing age at onset, including parental age at onset, age at onset by mutation type and family, and APOE genotype and sex. We additionally performed survival analysis using data on symptom onset collected from 183 ADAD mutation carriers followed longitudinally in the DIAN Study.
Results:
We report summary statistics on age at onset and disease course for 174 ADAD mutations, and discover strong and highly significant (p < 10−16, r2 > 0.38) correlations between individual age at symptom onset and predicted values based on parental age at onset and mean ages at onset by mutation type and family, which persist after controlling for APOE genotype and sex.
Conclusions:
Significant proportions of the observed variance in age at symptom onset in ADAD can be explained by family history and mutation type, providing empirical support for use of these data to estimate onset in clinical research.
doi:10.1212/WNL.0000000000000596
PMCID: PMC4117367  PMID: 24928124
4.  A novel PSEN1 Mutation (I238M) associated with early-onset Alzheimer’s disease in an African-American woman 
Mutations in PSEN1 are the most common cause of autosomal dominant familial Alzheimer’s disease (FAD). We describe an African-American woman with a family history consistent with FAD who began to have cognitive decline at age 50. Her clinical presentation, MRI, FDG- and PIB-PET scan findings were consistent with AD and she was found to have a novel I238M substitution in PSEN1. As this mutation caused increased production of Aβ42 in an in-vitro assay, was not present in two population databases, and is conserved across species, it is likely to be pathogenic for FAD.
doi:10.3233/JAD-131844
PMCID: PMC3972314  PMID: 24413619
autosomal dominant; Alzheimer’s disease; PSEN1; Presenilin-1; familial; PIB-PET; African; gamma-secretase; in-vitro; Aβ42
5.  DSM-5 Cannabis Use Disorder: A Phenotypic and Genomic Perspective* 
Drug and alcohol dependence  2013;134:362-369.
Background
We explore the factor structure of DSM-5 cannabis use disorders, examine its prevalence across European- and African-American respondents as well as its genetic underpinnings, utilizing data from a genome-wide study of single nucleotide polymorphisms (SNPs). We also estimate the heritability of DSM-5 cannabis use disorders explained by these common SNPs.
Methods
Data on 3053 subjects reporting a lifetime history of cannabis use were utilized. Exploratory and confirmatory factor analyses were conducted to create a factor score, which was used in a genomewide association analysis. P-values from the single SNP analysis were examined for evidence of gene-based association. The aggregate effect of all SNPs was also estimated using Genome-Wide Complex Traits Analysis.
Results
The unidimensionality of DSM-5 cannabis use disorder criteria was demonstrated. Comparing DSM-IV to DSM-5, a decrease in prevalence of cannabis use disorders was only noted in European-American respondents and was exceedingly modest. For the DSM-5 cannabis use disorders factor score, no SNP surpassed the genome-wide significance testing threshold. However, in the European-American subsample, gene-based association testing resulted in significant associations in 3 genes (C17orf58, BPTF and PPM1D) on chromosome 17q24. In aggregate, 21% of the variance in DSM-5 cannabis use disorders was explained by the genomewide SNPs; however, this estimate was not statistically significant.
Conclusions
DSM-5 cannabis use disorder represents a unidimensional construct, the prevalence of which is only modestly elevated above the DSM-IV version. Considerably larger sample sizes will be required to identify individual SNPs associated with cannabis use disorders and unequivocally establish its polygenic underpinnings.
doi:10.1016/j.drugalcdep.2013.11.008
PMCID: PMC3943464  PMID: 24315570
Cannabis; DSM-5; GWAS; association; genetics; heritability
6.  Pharmacotherapy Effects on Smoking Cessation Vary with Nicotine Metabolism Gene (CYP2A6) 
Addiction (Abingdon, England)  2013;109(1):128-137.
Background and aims
Evidence suggests that both the nicotinic receptor α5 subunit (CHRNA5) and Cytochrome P450 2A6 (CYP2A6) genotypes influence smoking cessation success and response to pharmacotherapy. We examine the effect of CYP2A6 genotype on smoking cessation success and response to cessation pharmacotherapy, and combine these effects with those of CHRNA5 genotypes.
Design
Placebo-controlled randomized smoking cessation trial
Setting
Ambulatory care facility in Wisconsin, USA.
Participants
Smokers (N=709) of European ancestry were randomized to placebo, bupropion, nicotine replacement therapy, or combined bupropion and nicotine replacement therapy.
Measurements
Survival analysis was used to model time to relapse using nicotine metabolism derived from CYP2A6 genotype-based estimates. Slow metabolism is defined as the lowest quartile of estimated metabolic function.
Findings
CYP2A6-defined nicotine metabolic function moderated the effect of smoking cessation pharmacotherapy on smoking relapse over 90 days (Hazard Ratio (HR) = 2.81, 95%CI=1.32-5.99, p=0.0075), with pharmacotherapy significantly slowing relapse in fast (HR=0.39, 95%CI=0.28-0.55, p=1.97×10-8), but not slow, metabolizers (HR=1.09, 95%CI=0.55-2.17, p=0.80). Further, only the effect of nicotine replacement, and not bupropion, varies with CYP2A6-defined metabolic function. The effect of nicotine replacement on continuous abstinence is moderated by the combined genetic risks from CYP2A6 and CHRNA5 (interaction effect size=0.74, 95%CI=0.59-0.94, p=0.013).
Conclusions
Nicotine replacement therapy is effective amongst individuals with fast, but not slow, CYP2A6-defined nicotine metabolism. The effect of bupropion on relapse likelihood is unlikely affected by nicotine metabolism as estimated from CYP2A6 genotype. The variation in treatment responses amongst smokers with genes may guide future personalized smoking cessation interventions.
doi:10.1111/add.12353
PMCID: PMC3946972  PMID: 24033696
Smoking Cessation; Nicotine; Metabolism; Pharmacogenetics
7.  The Contribution of Common UGT2B10 and CYP2A6 Alleles to Variation in Nicotine Glucuronidation among European Americans 
Pharmacogenetics and genomics  2013;23(12):706-716.
UDP-glucuronosytransferase-2B10 (UGT2B10) is the primary catalyst of nicotine glucuronidation. To develop a predictive genetic model of nicotine metabolism, the conversion of deuterated (D2)-nicotine to D2-nicotine-glucuronide, D2-cotinine, D2-cotinine-glucuronide, and D2-trans-3'-hydroxycotinine were quantified in 188 European Americans, and the contribution of UGT2B10 genotype to variability in first-pass nicotine glucuronidation assessed, following a procedure previously applied to nicotine C-oxidation. The proportion of total nicotine converted to nicotine-glucuronide (D2-nicotine-glucuronide/ (D2-nicotine +D2-nicotine-glucuronide +D2-cotinine +D2-cotinine-glucuronide +D2-trans-3'-hydroxycotinine)) was the primary phenotype. The variant, rs61750900T (D67Y) (minor allele frequency (MAF) = 10%), is confirmed to abolish nicotine glucuronidation activity. Another variant, rs112561475G (N397D) (MAF = 2%), is significantly associated with enhanced glucuronidation. rs112561475G is the ancestral allele of a well-conserved amino acid, indicating that the majority of human UGT2B10 alleles are derived hypomorphic alleles. CYP2A6 and UGT2B10 genotype explain 53% of the variance in oral nicotine glucuronidation in this sample. CYP2A6 and UGT2B10 genetic variants are also significantly associated with un-deuterated (D0) nicotine glucuronidation in subjects smoking ad libitum. We find no evidence for further common variation markedly influencing hepatic UGT2B10 expression in European Americans.
doi:10.1097/FPC.0000000000000011
PMCID: PMC3919513  PMID: 24192532
UGT2B10; nicotine; cotinine; metabolism; glucuronidation; CYP2A6
8.  Functional Connectivity in Autosomal Dominant and Late-Onset Alzheimer Disease 
JAMA neurology  2014;71(9):1111-1122.
Importance
Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in three specific genes, in contrast to late-onset Alzheimer Disease (LOAD), which has a more polygenetic risk profile.
Design, Setting, and Participants
We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of ADAD (N=79) and LOAD (N=444) human participants using resting state functional connectivity MRI (rs-fcMRI) at multiple international academic sites.
Main Outcomes and Measures
For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity as measured by clinical dementia rating (CDR). In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within five RSNs.
Results
Functional connectivity decreases with increasing CDR were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in each type of AD accurately predicted CDR stage in the other, further demonstrating similarity of functional connectivity loss in each disease type. Among ADAD participants, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared to asymptomatic mutation non-carriers.
Conclusions and Relevance
rs-fcMRI changes with progressing AD severity are similar between ADAD and LOAD. Rs-fcMRI may be a useful endpoint for LOAD and ADAD therapy trials. ADAD disease process may be an effective model for LOAD disease process.
doi:10.1001/jamaneurol.2014.1654
PMCID: PMC4240274  PMID: 25069482
Resting-state functional connectivity; autosomal dominant Alzheimer's disease; late-onset Alzheimer's disease; default mode network; apolipoprotein E (APOE)
9.  Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity 
PLoS ONE  2014;9(11):e111899.
Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics.
doi:10.1371/journal.pone.0111899
PMCID: PMC4229119  PMID: 25390692
10.  Stress-response pathways are altered in the hippocampus of chronic alcoholics 
Alcohol (Fayetteville, N.Y.)  2013;47(7):10.1016/j.alcohol.2013.07.002.
The chronic high-level alcohol consumption seen in alcoholism leads to dramatic effects on the hippocampus, including decreased white matter, loss of oligodendrocytes and other glial cells, and inhibition of neurogenesis. Examining gene expression in post mortem hippocampal tissue from 20 alcoholics and 19 controls allowed us to detect differentially expressed genes that may play a role in the risk for alcoholism or whose expression is modified by chronic consumption of alcohol. We identified 639 named genes whose expression significantly differed between alcoholics and controls at a False Discovery Rate (FDR) ≤ 0.20; 52% of these genes differed by at least 1.2-fold. Differentially expressed genes included the glucocorticoid receptor and the related gene FK506 binding protein 5 (FKBP5), UDP glycosyltransferase 8 (UGT8), urea transporter (SLC14A1), zinc transporter (SLC39A10), Interleukin 1 receptor type 1 (IL1R1), thioredoxin interacting protein (TXNIP), and many metallothioneins. Pathways related to inflammation, hypoxia, and stress showed activation, and pathways that play roles in neurogenesis and myelination showed decreases. The cortisol pathway dysregulation and increased inflammation identified here are seen in other stress-related conditions such as depression and post-traumatic stress disorder and most likely play a role in addiction. Many of the detrimental effects on the hippocampus appear to be mediated through NF-κB signaling. Twenty-four of the differentially regulated genes were previously identified by genome-wide association studies of alcohol use disorders; this raises the potential interest of genes not normally associated with alcoholism, such as suppression of tumorigenicity 18 (ST18), BCL2-associated athanogene 3 (BAG3), and von Willebrand factor (VWF).
doi:10.1016/j.alcohol.2013.07.002
PMCID: PMC3836826  PMID: 23981442
alcoholism; stress; inflammation; cortisol; hippocampus; gene expression; GWAS; NF-κ
11.  Novel progranulin variants do not disrupt progranulin secretion and cleavage 
Neurobiology of aging  2013;34(11):2538-2540.
A subset of frontotemporal dementia cases are neuropathologically defined by tau negative, TDP-43 and ubiquitin positive inclusions in the brain and are associated with mutations in the progranulin gene (GRN). Deep sequencing of families exhibiting late onset dementia revealed several novel variants in the GRN gene. Due to the small size of these families and limited availability of samples, it was not possible to determine whether the variants segregated with disease. Furthermore, none of these families had autopsy confirmation of diagnosis. We sought to determine if these novel GRN variants alter progranulin protein (PGRN) stability, PGRN secretion, and PGRN cleavage in cultured cells. All of the novel GRN variants behave like PGRN WT protein, suggesting that these variants represent rare polymorphisms. However, it remains possible that these variants affect other aspects of PGRN function or represent risk factors for dementia when combined with other modifying genes.
doi:10.1016/j.neurobiolaging.2013.05.004
PMCID: PMC3745590  PMID: 23759146
Late onset Alzheimer’s disease; frontotemporal dementia; progranulin; granulin
12.  Genome-Wide Association Study of CSF Levels of 59 Alzheimer's Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation 
PLoS Genetics  2014;10(10):e1004758.
Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10−10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.
Author Summary
The use of quantitative endophenotypes from cerebrospinal fluid has led to the identification of several genetic variants that alter risk or rate of progression of Alzheimer's disease. Here we have analyzed the levels of 58 disease-related proteins in the cerebrospinal fluid for association with millions of variants across the human genome. We have identified significant, replicable associations with 5 analytes, Angiotensin-converting enzyme, Chemokine (C-C motif) ligand 2, Chemokine (C-C motif) ligand 4, Interleukin 6 receptor and Matrix metalloproteinase-3. Our results suggest that these variants play a regulatory role in the respective protein levels and are relevant to the inflammatory and amyloid processing pathways. Variants in associated with ACE and those associated with MMP3 levels also show association with risk for Alzheimer's disease in the expected directions. These associations are consistent in cerebrospinal fluid and plasma and in samples with only cognitively normal individuals suggesting that they are relevant in the regulation of these protein levels beyond the context of Alzheimer's disease.
doi:10.1371/journal.pgen.1004758
PMCID: PMC4207667  PMID: 25340798
13.  A meta-analysis of two genome-wide association studies to identify novel loci for maximum number of alcoholic drinks 
Human genetics  2013;132(10):1141-1151.
Maximum number of alcoholic drinks consumed in a 24-h period (maxdrinks) is a heritable (> 50%) trait and is strongly correlated with vulnerability to excessive alcohol consumption and subsequent alcohol dependence (AD). Several genome-wide association studies (GWAS) have studied alcohol dependence, but few have concentrated on excessive alcohol consumption. We performed two GWAS using maxdrinks as an excessive alcohol consumption phenotype: one in 118 extended families (N=2322) selected from the Collaborative Study on the Genetics of Alcoholism (COGA), and the other in a case-control sample (N=2593) derived from the Study of Addiction: Genes and Environment (SAGE). The strongest association in the COGA families was detected with rs9523562 (p = 2.1×10−6) located in an intergenic region on chromosome 13q31.1; the strongest association in the SAGE dataset was with rs67666182 (p = 7.1×10−7), located in an intergenic region on chromosome 8. We also performed a meta-analysis with these two GWAS and demonstrated evidence of association in both datasets for the LMO1 (p = 7.2×10−7) and PLCL1 genes (p = 4.1×10−6) with increased maxdrinks. A variant in AUTS2 and variants in INADL, C15orf32 and HIP1 that were associated with measures of alcohol consumption in a meta-analysis of GWAS studies and a GWAS of alcohol consumption factor score also showed nominal association in the current meta-analysis. The present study has identified several loci that warrant further examination in independent samples. Among the top SNPs in each of the dataset (p≤10−4) far more showed the same direction of effect in the other dataset than would be expected by chance (p = 2×10−3, 3×10−6), suggesting that there are true signals among these top SNPs, even though no SNP reached genome-wide levels of significance.
doi:10.1007/s00439-013-1318-z
PMCID: PMC3776011  PMID: 23743675
Alcohol consumption; maximum number of alcoholic drinks; GWAS; COGA; SAGE
14.  Genetic Heterogeneity in Alzheimer Disease and Implications for Treatment Strategies 
Since the original publication describing the illness in 1907, the genetic understanding of Alzheimer’s disease (AD) has advanced such that it is now clear that it is a genetically heterogeneous condition, the subtypes of which may not uniformly respond to a given intervention. It is therefore critical to characterize the clinical and preclinical stages of AD subtypes, including the rare autosomal dominant forms caused by known mutations in the PSEN1, APP, and PSEN2 genes that are being studied in the Dominantly Inherited Alzheimer Network study and its associated secondary prevention trial. Similar efforts are occurring in an extended Colombian family with a PSEN1 mutation, in APOE ε4 homozygotes, and in Down syndrome. Despite commonalities in the mechanisms producing the AD phenotype, there are also differences that reflect specific genetic origins. Treatment modalities should be chosen and trials designed with these differences in mind. Ideally, the varying pathological cascades involved in the different subtypes of AD should be defined so that both areas of overlap and of distinct differences can be taken into account. At the very least, clinical trials should determine the influence of known genetic factors in post hoc analyses.
doi:10.1007/s11910-014-0499-8
PMCID: PMC4162987  PMID: 25217249
Alzheimer’s disease; Genetic; Heterogeneity; Presenilin; Amyloid precursor protein; Apolipoprotein E
15.  Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in ALS 
Neurobiology of aging  2013;34(9):2234.e13-2234.e19.
Hexanucleotide repeat expansions in C9ORF72 are a common cause of familial and apparently sporadic amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The mechanism by which expansions cause neurodegeneration is unknown, but current evidence supports both loss-of-function and gain-of-function mechanisms. We used pooled next-generation sequencing of the C9ORF72 gene in 389 ALS patients to look for traditional loss-of-function mutations. Although rare variants were identified, none were likely to be pathogenic, suggesting that mutations other than the repeat expansion are not a common cause of ALS, and providing supportive evidence for a gain-of-function mechanism. We also show by repeat-primed PCR genotyping that the C9ORF72 expansion frequency varies by geographical region within the United States, with an unexpectedly high frequency in the Mid-West. Finally we also show evidence of somatic instability of the expansion size by Southern blot, with the largest expansions occurring in brain tissue.
doi:10.1016/j.neurobiolaging.2013.03.006
PMCID: PMC3679344  PMID: 23597494
Amyotrophic lateral sclerosis; genetics; C9ORF72 hexanucleotide repeat; C9ORF72
16.  Genetic and neurophysiological correlates of the age of onset of alcohol use disorders in adolescents and young adults 
Behavior genetics  2013;43(5):386-401.
Discrete time survival analysis (DTSA) was used to assess the age-specific association of event related oscillations (EROs) and CHRM2 gene variants on the onset of regular alcohol use and alcohol dependence. The subjects were 2938 adolescents and young adults ages 12 to 25. Results showed that the CHRM2 gene variants and ERO risk factors had hazards which varied considerably with age. The bulk of the significant age-specific associations occurred in those whose age of onset was under 16. These associations were concentrated in those subjects who at some time took an illicit drug. These results are consistent with studies which associate greater rates of alcohol dependence among those who begin drinking at an early age. The age specificity of the genetic and neurophysiological factors is consistent with recent studies of adolescent brain development, which locate an interval of heightened vulnerability to substance use disorders in the early to mid teens.
doi:10.1007/s10519-013-9604-z
PMCID: PMC4110722  PMID: 23963516
alcoholism; CHRM2; survival analysis; ERO; genetics; adolescents
17.  Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases 
Neurology  2013;81(6):520-527.
Objective:
To use principal component analyses (PCA) of Pittsburgh compound B (PiB) PET imaging to determine whether the pattern of in vivo β-amyloid (Aβ) in Parkinson disease (PD) with cognitive impairment is similar to the pattern found in symptomatic Alzheimer disease (AD).
Methods:
PiB PET scans were obtained from participants with PD with cognitive impairment (n = 53), participants with symptomatic AD (n = 35), and age-matched controls (n = 67). All were assessed using the Clinical Dementia Rating and APOE genotype was determined in 137 participants. PCA was used to 1) determine the PiB binding pattern in AD, 2) determine a possible unique PD pattern, and 3) directly compare the PiB binding patterns in PD and AD groups.
Results:
The first 2 principal components (PC1 and PC2) significantly separated the AD and control participants (p < 0.001). Participants with PD with cognitive impairment also were significantly different from participants with symptomatic AD on both components (p < 0.001). However, there was no difference between PD and controls on either component. Even those participants with PD with elevated mean cortical binding potentials were significantly different from participants with AD on both components.
Conclusion:
Using PCA, we demonstrated that participants with PD with cognitive impairment do not exhibit the same PiB binding pattern as participants with AD. These data suggest that Aβ deposition may play a different pathophysiologic role in the cognitive impairment of PD compared to that in AD.
doi:10.1212/WNL.0b013e31829e6f94
PMCID: PMC3775684  PMID: 23825179
18.  Genetic variants influencing human aging from late-onset Alzheimer’s disease (LOAD) genome-wide association studies (GWAS) 
Neurobiology of aging  2012;33(8):1849.e5-1849.18.
Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being determined by genetic variation. Survival to older ages likely entails an even greater genetic contribution. There is increasing evidence that genes implicated in age-related diseases, such as cancer and neuronal disease, play a role in affecting human life span. We have selected the 10 most promising late-onset Alzheimer’s disease (LOAD) susceptibility genes identified through several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for association with human aging in our dataset (1385 samples with documented age at death [AAD], age range: 58–108 years; mean age at death: 80.2) using the most significant single nucleotide polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650) which showed compelling evidence of association with risk on human life span (p = 5.27 × 10−4), none of the other LOAD gene loci demonstrated significant evidence of association. In addition to examining the known LOAD genes, we carried out analyses using age at death as a quantitative trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical power will be imperative to detect genuine aging-associated variants in the future. In this report, we also discuss issues relating to the analysis of genome-wide association studies data from different centers and the bioinformatic approach required to distinguish spurious genome-wide significant signals from real SNP associations.
doi:10.1016/j.neurobiolaging.2012.02.014
PMCID: PMC4120742  PMID: 22445811
Lifespan; Late onset Alzheimer’s disease; GWAS; Aging; Genes
19.  The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer’s Disease 
Gerrish, Amy | Russo, Giancarlo | Richards, Alexander | Moskvina, Valentina | Ivanov, Dobril | Harold, Denise | Sims, Rebecca | Abraham, Richard | Hollingworth, Paul | Chapman, Jade | Hamshere, Marian | Pahwa, Jaspreet Singh | Dowzell, Kimberley | Williams, Amy | Jones, Nicola | Thomas, Charlene | Stretton, Alexandra | Morgan, Angharad R. | Lovestone, Simon | Powell, John | Proitsi, Petroula | Lupton, Michelle K. | Brayne, Carol | Rubinsztein, David C. | Gill, Michael | Lawlor, Brian | Lynch, Aoibhinn | Morgan, Kevin | Brown, Kristelle S. | Passmore, Peter A. | Craig, David | McGuinness, Bernadette | Todd, Stephen | Johnston, Janet A. | Holmes, Clive | Mann, David | Smith, A. David | Love, Seth | Kehoe, Patrick G. | Hardy, John | Mead, Simon | Fox, Nick | Rossor, Martin | Collinge, John | Maier, Wolfgang | Jessen, Frank | Kölsch, Heike | Heun, Reinhard | Schürmann, Britta | van den Bussche, Hendrik | Heuser, Isabella | Kornhuber, Johannes | Wiltfang, Jens | Dichgans, Martin | Frölich, Lutz | Hampel, Harald | Hüll, Michael | Rujescu, Dan | Goate, Alison M. | Kauwe, John S. K. | Cruchaga, Carlos | Nowotny, Petra | Morris, John C. | Mayo, Kevin | Livingston, Gill | Bass, Nicholas J. | Gurling, Hugh | McQuillin, Andrew | Gwilliam, Rhian | Deloukas, Panagiotis | Davies, Gail | Harris, Sarah E. | Starr, John M. | Deary, Ian J. | Al-Chalabi, Ammar | Shaw, Christopher E. | Tsolaki, Magda | Singleton, Andrew B. | Guerreiro, Rita | Mühleisen, Thomas W. | Nöthen, Markus M. | Moebus, Susanne | Jöckel, Karl-Heinz | Klopp, Norman | Wichmann, H-Erich | Carrasquillo, Minerva M | Pankratz, V Shane | Younkin, Steven G. | Jones, Lesley | Holmans, Peter A. | O’Donovan, Michael C. | Owen, Michael J. | Williams, Julie
Rare mutations in AβPP, PSEN1, and PSEN2 cause uncommon early onset forms of Alzheimer’s disease (AD), and common variants in MAPT are associated with risk of other neurodegenerative disorders. We sought to establish whether common genetic variation in these genes confer risk to the common form of AD which occurs later in life (>65 years). We therefore tested single-nucleotide polymorphisms at these loci for association with late-onset AD (LOAD) in a large case-control sample consisting of 3,940 cases and 13,373 controls. Single-marker analysis did not identify any variants that reached genome-wide significance, a result which is supported by other recent genome-wide association studies. However, we did observe a significant association at the MAPT locus using a gene-wide approach (p = 0.009). We also observed suggestive association between AD and the marker rs9468, which defines the H1 haplotype, an extended haplotype that spans the MAPT gene and has previously been implicated in other neurodegenerative disorders including Parkinson’s disease, progressive supranuclear palsy, and corticobasal degeneration. In summary common variants at AβPP, PSEN1, and PSEN2 and MAPT are unlikely to make strong contributions to susceptibility for LOAD. However, the gene-wide effect observed at MAPT indicates a possible contribution to disease risk which requires further study.
doi:10.3233/JAD-2011-110824
PMCID: PMC4118466  PMID: 22027014
Alzheimer’s disease; amyloid-β protein precursor; genetics; human; MAPT protein; PSEN1 protein; PSEN2 protein
20.  Rare coding variants in Phospholipase D3 (PLD3) confer risk for Alzheimer's disease 
Nature  2013;505(7484):550-554.
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1,2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low frequency coding variants with large effects on LOAD risk, we performed whole exome-sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large case-control datasets. A rare variant in PLD3 (phospholipase-D family, member 3, rs145999145; V232M) segregated with disease status in two independent families and doubled risk for AD in seven independent case-control series (V232M meta-analysis; OR= 2.10, CI=1.47-2.99; p= 2.93×10-5, 11,354 cases and controls of European-descent). Gene-based burden analyses in 4,387 cases and controls of European-descent and 302 African American cases and controls, with complete sequence data for PLD3, indicate that several variants in this gene increase risk for AD in both populations (EA: OR= 2.75, CI=2.05-3.68; p=1.44×10-11, AA: OR= 5.48, CI=1.77-16.92; p=1.40×10-3). PLD3 is highly expressed in brain regions vulnerable to AD pathology, including hippocampus and cortex, and is expressed at lower levels in neurons from AD brains compared to control brains (p=8.10×10-10). Over-expression of PLD3 leads to a significant decrease in intracellular APP and extracellular Aβ42 and Aβ40, while knock-down of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a two-fold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may be used to identify rare variants with large effects on risk for disease or other complex traits.
doi:10.1038/nature12825
PMCID: PMC4050701  PMID: 24336208
21.  Common biological networks underlie genetic risk for alcoholism in African- and European-American populations 
Genes, brain, and behavior  2013;12(5):532-542.
Alcohol dependence (AD) is a heritable substance addiction with adverse physical and psychological consequences, representing a major health and economic burden on societies worldwide. Genes thus far implicated via linkage, candidate gene and genome-wide association studies (GWAS) account for only a small fraction of its overall risk, with effects varying across ethnic groups. Here we investigate the genetic architecture of alcoholism and report on the extent to which common, genome-wide SNPs collectively account for risk of AD in two US populations, African-Americans (AAs) and European-Americans (EAs). Analyzing GWAS data for two independent case-control sample sets, we compute polymarker scores that are significantly associated with alcoholism (P=1.64 × 10−3 and 2.08 × 10−4 for EAs and AAs, respectively), reflecting the small individual effects of thousands of variants derived from patterns of allelic architecture that are population-specific. Simulations show that disease models based on rare and uncommon causal variants (MAF<0.05) best fit the observed distribution of polymarker signals. When scoring bins were annotated for gene location and examined for constituent biological networks, gene enrichment is observed for several cellular processes and functions in both EA and AA populations, transcending their underlying allelic differences. Our results reveal key insights into the complex etiology of AD, raising the possibility of an important role for rare and uncommon variants, and identify polygenic mechanisms that encompass a spectrum of disease liability, with some, such as chloride transporters and glycine metabolism genes, displaying subtle, modifying effects that are likely to escape detection in most GWAS designs.
doi:10.1111/gbb.12043
PMCID: PMC3709451  PMID: 23607416
alcohol dependence; GWAS; polymarker scores; synthetic association; rare variants; pathway analysis
22.  Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease 
Escott-Price, Valentina | Bellenguez, Céline | Wang, Li-San | Choi, Seung-Hoan | Harold, Denise | Jones, Lesley | Holmans, Peter | Gerrish, Amy | Vedernikov, Alexey | Richards, Alexander | DeStefano, Anita L. | Lambert, Jean-Charles | Ibrahim-Verbaas, Carla A. | Naj, Adam C. | Sims, Rebecca | Jun, Gyungah | Bis, Joshua C. | Beecham, Gary W. | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A. | Denning, Nicola | Smith, Albert V. | Chouraki, Vincent | Thomas, Charlene | Ikram, M. Arfan | Zelenika, Diana | Vardarajan, Badri N. | Kamatani, Yoichiro | Lin, Chiao-Feng | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L. | Vronskaya, Maria | Johnson, Andrew D. | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Hanon, Olivier | Fitzpatrick, Annette L. | Buxbaum, Joseph D. | Campion, Dominique | Crane, Paul K. | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L. | De Jager, Philip L. | Deramecourt, Vincent | Johnston, Janet A. | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Hernández, Isabel | Rubinsztein, David C. | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M. | Fiévet, Nathalie | Huentelman, Matthew J. | Gill, Michael | Brown, Kristelle | Kamboh, M. Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B. | Myers, Amanda J. | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | George-Hyslop, Peter St | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W. | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petra | Collinge, John | Sorbi, Sandro | Garcia, Florentino Sanchez | Fox, Nick C. | Hardy, John | Naranjo, Maria Candida Deniz | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Scarpini, Elio | Bonuccelli, Ubaldo | Mancuso, Michelangelo | Siciliano, Gabriele | Moebus, Susanne | Mecocci, Patrizia | Zompo, Maria Del | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Frank-García, Ana | Panza, Francesco | Solfrizzi, Vincenzo | Caffarra, Paolo | Nacmias, Benedetta | Perry, William | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M. | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G. | Coto, Eliecer | Hamilton-Nelson, Kara L. | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J. | Faber, Kelley M. | Jonsson, Palmi V. | Combarros, Onofre | O'Donovan, Michael C. | Cantwell, Laura B. | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H. | Bennett, David A. | Harris, Tamara B. | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F. A. G. | Passmore, Peter | Montine, Thomas J. | Bettens, Karolien | Rotter, Jerome I. | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M. | Kukull, Walter A. | Hannequin, Didier | Powell, John F. | Nalls, Michael A. | Ritchie, Karen | Lunetta, Kathryn L. | Kauwe, John S. K. | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R. | Schmidt, Reinhold | Rujescu, Dan | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M. | Graff, Caroline | Psaty, Bruce M. | Haines, Jonathan L. | Lathrop, Mark | Pericak-Vance, Margaret A. | Launer, Lenore J. | Van Broeckhoven, Christine | Farrer, Lindsay A. | van Duijn, Cornelia M. | Ramirez, Alfredo | Seshadri, Sudha | Schellenberg, Gerard D. | Amouyel, Philippe | Williams, Julie
PLoS ONE  2014;9(6):e94661.
Background
Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.
Principal Findings
In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10−6) and 14 (IGHV1-67 p = 7.9×10−8) which indexed novel susceptibility loci.
Significance
The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
doi:10.1371/journal.pone.0094661
PMCID: PMC4055488  PMID: 24922517
23.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease 
Lambert, Jean-Charles | Ibrahim-Verbaas, Carla A | Harold, Denise | Naj, Adam C | Sims, Rebecca | Bellenguez, Céline | Jun, Gyungah | DeStefano, Anita L | Bis, Joshua C | Beecham, Gary W | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A | Jones, Nicola | Smith, Albert V | Chouraki, Vincent | Thomas, Charlene | Ikram, M Arfan | Zelenika, Diana | Vardarajan, Badri N | Kamatani, Yoichiro | Lin, Chiao-Feng | Gerrish, Amy | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Choi, Seung-Hoan | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Ramirez, Alfredo | Hanon, Olivier | Fitzpatrick, Annette L | Buxbaum, Joseph D | Campion, Dominique | Crane, Paul K | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L | De Jager, Philip L | Deramecourt, Vincent | Johnston, Janet A | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Morón, Francisco J | Rubinsztein, David C | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M | Fiévet, Nathalie | Huentelman, Matthew J | Gill, Michael | Brown, Kristelle | Kamboh, M Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B | Green, Robert | Myers, Amanda J | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | St George-Hyslop, Peter | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petroula | Collinge, John | Sorbi, Sandro | Sanchez-Garcia, Florentino | Fox, Nick C | Hardy, John | Deniz Naranjo, Maria Candida | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Mancuso, Michelangelo | Matthews, Fiona | Moebus, Susanne | Mecocci, Patrizia | Zompo, Maria Del | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Bullido, Maria | Panza, Francesco | Caffarra, Paolo | Nacmias, Benedetta | Gilbert, John R | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G | Coto, Eliecer | Hamilton-Nelson, Kara L | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J | Faber, Kelley M | Jonsson, Palmi V | Combarros, Onofre | O’Donovan, Michael C | Cantwell, Laura B | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H | Bennett, David A | Harris, Tamara B | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F A G | Passmore, Peter | Montine, Thomas J | Bettens, Karolien | Rotter, Jerome I | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M | Kukull, Walter A | Hannequin, Didier | Powell, John F | Nalls, Michael A | Ritchie, Karen | Lunetta, Kathryn L | Kauwe, John S K | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R | Schmidt, Reinhold | Rujescu, Dan | Wang, Li-san | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M | Graff, Caroline | Psaty, Bruce M | Jones, Lesley | Haines, Jonathan L | Holmans, Peter A | Lathrop, Mark | Pericak-Vance, Margaret A | Launer, Lenore J | Farrer, Lindsay A | van Duijn, Cornelia M | Van Broeckhoven, Christine | Moskvina, Valentina | Seshadri, Sudha | Williams, Julie | Schellenberg, Gerard D | Amouyel, Philippe
Nature genetics  2013;45(12):1452-1458.
Eleven susceptibility loci for late-onset Alzheimer’s disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls. In stage 2,11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer’s disease.
doi:10.1038/ng.2802
PMCID: PMC3896259  PMID: 24162737
24.  Functional Characterization Improves Associations between Rare Non-Synonymous Variants in CHRNB4 and Smoking Behavior 
PLoS ONE  2014;9(5):e96753.
Smoking is the leading cause of preventable death worldwide. Accordingly, effort has been devoted to determining the genetic variants that contribute to smoking risk. Genome-wide association studies have identified several variants in nicotinic acetylcholine receptor genes that contribute to nicotine dependence risk. We previously undertook pooled sequencing of the coding regions and flanking sequence of the CHRNA5, CHRNA3, CHRNB4, CHRNA6 and CHRNB3 genes and found that rare missense variants at conserved residues in CHRNB4 are associated with reduced risk of nicotine dependence among African Americans. We identified 10 low frequency (<5%) non-synonymous variants in CHRNB4 and investigated functional effects by co-expression with normal α3 or α4 subunits in human embryonic kidney cells. Voltage-clamp was used to obtain acetylcholine and nicotine concentration–response curves and qRT-PCR, western blots and cell-surface ELISAs were performed to assess expression levels. These results were used to functionally weight genetic variants in a gene-based association test. We find that there is a highly significant correlation between carrier status weighted by either acetylcholine EC50 (β = −0.67, r2 = 0.017, P = 2×10−4) or by response to low nicotine (β = −0.29, r2 = 0.02, P = 6×10−5) when variants are expressed with the α3 subunit. In contrast, there is no significant association when carrier status is unweighted (β = −0.04, r2 = 0.0009, P = 0.54). These results highlight the value of functional analysis of variants and the advantages to integrating such data into genetic studies. They also suggest that an increased sensitivity to low concentrations of nicotine is protective from the risk of developing nicotine dependence.
doi:10.1371/journal.pone.0096753
PMCID: PMC4013067  PMID: 24804708
25.  Parkinson Disease is not associated with C9ORF72 repeat expansions 
Neurobiology of aging  2012;34(5):1519.e1-1519.e2.
Hexanucleotide expansions in the C9ORF72 gene are frequently found in patients with amyotrophic lateral sclerosis and/or frontotemporal dementia, some of whom exhibit concurrent extrapyramidal symptoms. To determine if repeat expansions are a cause of Parkinson Disease (PD), we used repeat-primed PCR to investigate the frequency of C9ORF72 repeat expansions in cohort of 478 patients with PD and 662 control subjects. While 3 control subjects were found to be expansion carriers, no expansions were found among patients, suggesting that C9ORF72 expansions are not a common cause of PD.
doi:10.1016/j.neurobiolaging.2012.10.001
PMCID: PMC3566343  PMID: 23116878
Parkinson Disease; genetics; C9ORF72; hexanucleotide repeat

Results 1-25 (159)