PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? 
Cancer Medicine  2013;2(4):427-436.
Abstract
Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co-option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co-option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10–30% of the tumors are reported to use this alternative blood supply. In addition, vessel co-option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co-option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co-option with specific examples of vessel co-option in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply.
Both primary and metastatic tumors use preexisting host tissue vessels as their blood supply. Tumors may grow to a clinically detectable size without angiogenesis and makes them less likely to respond to drugs designed to target the abnormal vasculature produced by angiogenesis, but further studies to explore the biological and clinical implication of these co-opted vessels is needed.
doi:10.1002/cam4.105
PMCID: PMC3799277  PMID: 24156015
Angiogenesis; cancer; lung cancer; nonangiogenic tumors; tumor growth; vessel co-option
2.  Further analysis of previously implicated linkage regions for Alzheimer's disease in affected relative pairs 
BMC Medical Genetics  2009;10:122.
Background
Genome-wide linkage studies for Alzheimer's disease have implicated several chromosomal regions as potential loci for susceptibility genes.
Methods
In the present study, we have combined a selection of affected relative pairs (ARPs) from the UK and the USA included in a previous linkage study by Myers et al. (Am J Med Genet, 2002), with ARPs from Sweden and Washington University. In this total sample collection of 397 ARPs, we have analyzed linkage to chromosomes 1, 9, 10, 12, 19 and 21, implicated in the previous scan.
Results
The analysis revealed that linkage to chromosome 19q13 close to the APOE locus increased considerably as compared to the earlier scan. However, linkage to chromosome 10q21, which provided the strongest linkage in the previous scan could not be detected.
Conclusion
The present investigation provides yet further evidence that 19q13 is the only chromosomal region consistently linked to Alzheimer's disease.
doi:10.1186/1471-2350-10-122
PMCID: PMC2791756  PMID: 19951422
3.  Does APOE Explain the Linkage of Alzheimer’s Disease to Chromosome 19q13? 
We have studied the impact of the apolipoprotein E gene (APOE) on the chromosome 19 linkage peak from an analysis of sib-pairs affected by Alzheimer’s disease. We genotyped 417 affected sib-pairs (ASPs) collected in Sweden and Norway (SWE), the UK and the USA for 10 microsatellite markers on chromosome 19. The highest Zlr (3.28, chromosome-wide P-value 0.036) from the multipoint linkage analysis was located approximately 1 Mb from APOE, at marker D19S178. The linkage to chromosome 19 was well explained by APOE in the whole sample as well as in the UK and USA subsamples, as identity by descent (IBD) increased with the number of ε4 alleles in ASPs. There was a suggestion from the SWE subsample that linkage was higher than would be expected from APOE alone, although the test for this did not reach formal statistical significance. There was also a significant age at onset (aao) effect on linkage to chromosome 19q13 in the whole sample, which manifested itself as increased IBD sharing in relative pairs with lower mean aao. This effect was partially, although not completely, explained by APOE. The aao effect varied considerably between the different subsamples, with most of the effect coming from the UK sample. The other samples showed smaller effects in the same direction, but these were not significant.
doi:10.1002/ajmg.b.30681
PMCID: PMC2726752  PMID: 18161859
Alzheimer’s disease; APOE; linkage; age at onset; apolipoprotein E
4.  ABCA1 POLYMORPHISMS AND ALZHEIMER’S DISEASE 
Neuroscience letters  2007;416(2):180-183.
In our search for genetic factors related to the development of Alzheimer’s disease, we have genotyped 332 pedigrees for 3 coding polymorphisms in the ABCA1 gene, two of which are known to alter plasma cholesterol levels, as well as a non-coding polymorphism within the promoter. We show an apparent weak association of rs2230806 (p-value= 0.01) with the disease in a sibpair series of Alzheimer’s disease that had shown previously evidence for linkage to the chromosome 9 locus where ABCA1 maps.
doi:10.1016/j.neulet.2007.02.010
PMCID: PMC1945126  PMID: 17324514
ABCA1; Alzheimer’s disease; polymorphisms

Results 1-4 (4)