Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus 
Acute hantavirus infection in humans triggers a rapid expansion and long-term persistence of NK cells.
Natural killer (NK) cells are known to mount a rapid response to several virus infections. In experimental models of acute viral infection, this response has been characterized by prompt NK cell activation and expansion followed by rapid contraction. In contrast to experimental model systems, much less is known about NK cell responses to acute viral infections in humans. We demonstrate that NK cells can rapidly expand and persist at highly elevated levels for >60 d after human hantavirus infection. A large part of the expanding NK cells expressed the activating receptor NKG2C and were functional in terms of expressing a licensing inhibitory killer cell immunoglobulin-like receptor (KIR) and ability to respond to target cell stimulation. These results demonstrate that NK cells can expand and remain elevated in numbers for a prolonged period of time in humans after a virus infection. In time, this response extends far beyond what is considered normal for an innate immune response.
PMCID: PMC3023129  PMID: 21173105
2.  NK Cell Activation in Human Hantavirus Infection Explained by Virus-Induced IL-15/IL15Rα Expression 
PLoS Pathogens  2014;10(11):e1004521.
Clinical infection with hantaviruses cause two severe acute diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases are characterized by strong immune activation, increased vascular permeability, and up to 50% case-fatality rates. One prominent feature observed in clinical hantavirus infection is rapid expansion of natural killer (NK) cells in peripheral blood of affected individuals. We here describe an unusually high state of activation of such expanding NK cells in the acute phase of clinical Puumala hantavirus infection. Expanding NK cells expressed markedly increased levels of activating NK cell receptors and cytotoxic effector molecules. In search for possible mechanisms behind this NK cell activation, we observed virus-induced IL-15 and IL-15Rα on infected endothelial and epithelial cells. Hantavirus-infected cells were shown to strongly activate NK cells in a cell-cell contact-dependent way, and this response was blocked with anti-IL-15 antibodies. Surprisingly, the strength of the IL-15-dependent NK cell response was such that it led to killing of uninfected endothelial cells despite expression of normal levels of HLA class I. In contrast, hantavirus-infected cells were resistant to NK cell lysis, due to a combination of virus-induced increase in HLA class I expression levels and hantavirus-mediated inhibition of apoptosis induction. In summary, we here describe a possible mechanism explaining the massive NK cell activation and proliferation observed in HFRS patients caused by Puumala hantavirus infection. The results add further insights into mechanisms behind the immunopathogenesis of hantavirus infections in humans and identify new possible targets for intervention.
Author Summary
Hantaviruses cause severe clinical infections with up to 50% case-fatality rates. The diseases represent an important global health problem as no vaccine or specific treatment is available. The most prominent hallmark in patients is strong immune activation, reflected as massive CD8 T and NK cell expansion, accompanied by severe vascular leakage. The mechanisms behind this massive immune activation are still not fully understood. Here, we first assessed the expression of several activation markers and receptors on NK cells derived from hantavirus-infected patients using flow cytometry. High NK cell activation was observed during the acute phase of clinical infection. To address possible underlying mechanisms explaining this NK cell activation, we established an in vitro hantavirus infection model using human primary endothelial cells, the natural in vivo targets of the virus. We demonstrate hantavirus-induced IL-15/IL-15Rα on infected endothelial cells, and show that this results in NK cell activation, similar to the profile found in hantavirus-infected patients. Interestingly, these activated NK cells were able to kill uninfected endothelial cells despite their normal expression of HLA class I. The present data add further insights into hantavirus-induced pathogenesis and suggest possible targets for future therapeutical interventions in these severe diseases.
PMCID: PMC4239055  PMID: 25412359
3.  Specificity and Dynamics of Effector and Memory CD8 T Cell Responses in Human Tick-Borne Encephalitis Virus Infection 
PLoS Pathogens  2015;11(1):e1004622.
Tick-borne encephalitis virus (TBEV) is transferred to humans by ticks. The virus causes tick-borne encephalitis (TBE) with symptoms such as meningitis and meningoencephalitis. About one third of the patients suffer from long-lasting sequelae after clearance of the infection. Studies of the immune response during TBEV-infection are essential to the understanding of host responses to TBEV-infection and for the development of therapeutics. Here, we studied in detail the primary CD8 T cell response to TBEV in patients with acute TBE. Peripheral blood CD8 T cells mounted a considerable response to TBEV-infection as assessed by Ki67 and CD38 co-expression. These activated cells showed a CD45RA-CCR7-CD127- phenotype at day 7 after hospitalization, phenotypically defining them as effector cells. An immunodominant HLA-A2-restricted TBEV epitope was identified and utilized to study the characteristics and temporal dynamics of the antigen-specific response. The functional profile of TBEV-specific CD8 T cells was dominated by variants of mono-functional cells as the effector response matured. Antigen-specific CD8 T cells predominantly displayed a distinct Eomes+Ki67+T-bet+ effector phenotype at the peak of the response, which transitioned to an Eomes-Ki67-T-bet+ phenotype as the infection resolved and memory was established. These transcription factors thus characterize and discriminate stages of the antigen-specific T cell response during acute TBEV-infection. Altogether, CD8 T cells responded strongly to acute TBEV infection and passed through an effector phase, prior to gradual differentiation into memory cells with distinct transcription factor expression-patterns throughout the different phases.
Author Summary
Tick-borne encephalitis virus (TBEV) belongs to the flavivirus family and causes tick-borne encephalitis. This is a severe meningoencephalitic disease with no available treatment. Detailed studies of the immune response during human TBEV infection are essential to understand host responses to TBE and for the development of therapeutics. Herein, we studied the primary T cell-mediated immune response in patients diagnosed with TBEV infection. We show that CD8 T cells mount a vigorous TBEV-specific response within one week of hospitalization. Moreover, TBEV-specific CD8 T cells displayed a distinctive phenotypic and functional profile, paired with a distinct transcription factor expression-pattern during the peak of activation. In summary, this is the first comprehensive study of the CD8 T cell response during acute human TBEV infection, and provides a framework for understanding of CD8 T cell-mediated immunity in this emerging viral disease.
PMCID: PMC4303297  PMID: 25611738
4.  Activation, co–activation, and co–stimulation of resting human NK cells 
Immunological reviews  2006;214:10.1111/j.1600-065X.2006.00457.x.
NK cells possess potent perforin– and IFN-γ–dependent effector functions that are tightly regulated. Inhibitory receptors for MHC class I display variegated expression among NK cells, which confers specificity to individual NK cells. Specificity is also provided by engagement of an array of NK cell activation receptors. Target cells may express ligands for a multitude of activation receptors, many of which signal through different pathways. How inhibitory receptors intersect different signaling cascades is not fully understood. This review focuses on advances in understanding how activation receptors cooperate to induce cytotoxicity in resting NK cells. The role of activating receptors in determining specificity and providing redundancy of target cell recognition is discussed. Using Drosophila insect cells as targets, we have recently examined the contribution of individual receptors. Interestingly, the strength of activation is not determined simply by additive effects of parallel activation pathways. Combinations of signals from different receptors can have different outcomes: synergy, no enhancement over individual signals, or additive effects. Cytotoxicity requires combined signals for granule polarization and degranulation. The integrin LFA-1 contributes a signal for polarization, but not degranulation. Conversely, CD16 alone or synergistic combinations, such as NKG2D and 2B4, signal for PLC-γ and PI3K–dependent degranulation.
PMCID: PMC3845883  PMID: 17100877
Innate Immunity; Natural killer cell; Signaling; Synergy
5.  Interferon α–Stimulated Natural Killer Cells From Patients With Acute Hepatitis C Virus (HCV) Infection Recognize HCV-Infected and Uninfected Hepatoma Cells via DNAX accessory molecule-1 
The Journal of Infectious Diseases  2012;205(9):1351-1362.
Background. Natural killer (NK) cells are an important component of the innate immune defense against viruses, including hepatitis C virus (HCV). The cell culture system using HCV-permissive Huh-7.5 cells make studies on interaction of NK cells and HCV-infected target cells possible. We used this system to characterize interactions of HCV-infected Huh-7.5 cells and NK cells from healthy controls and patients with acute HCV infection.
Methods. IFNα- and IL-2 stimulated NK cells were cultured with HCV-infected hepatoma cells and subsequently analyzed (for degranulation and cytokine production) via multicolour flow cytometry. Luciferase assyas have been used to study inhibition of HCV replication. Further, PBMC from patients with acute hepatitis C as well as HCV-infected Huh7.5 cells have been analyzed via flow cytometry for expression of NK cell receptors and ligands, respectively.
Results. After interferon (IFN) α stimulation, NK cells from healthy controls and patients with acute hepatitis C efficiently recognized both HCV-infected and uninfected hepatoma cells. Subsequent dissection of receptor-ligand interaction revealed a dominant role for DNAM-1 and a complementary contribution of NKG2D for NK cell activation in this setting. Furthermore, IFN-α–stimulated NK cells effectively inhibited HCV replication in a DNAM-1–dependent manner.
Conclusions. Human NK cells recognize HCV-infected hepatoma cells after IFN-α stimulation in a DNAM-1–dependent manner. Furthermore, interaction of IFN-α–stimulated NK cells with HCV-infected hepatoma cells efficiently reduced HCV replication. This study opens up future studies of NK cell interaction with HCV-infected hepatocytes to gain further insight into the pathogenesis of human HCV infection and the therapeutic effects of IFN-α.
PMCID: PMC3690562  PMID: 22457290
6.  Organ-specific features of natural killer cells 
Nature reviews. Immunology  2011;11(10):658-671.
Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals at target organs of disease. However, the role of NK cells in mounting inflammatory responses is often complex and sometimes paradoxical. Here, we examine the divergent phenotypic and functional features of NK cells, as deduced largely from experimental mouse models of pathophysiological responses in the liver, mucosal tissues, uterus, pancreas, joints and brain. Moreover, we discuss how organ-specific factors, the local microenvironment and unique cellular interactions may influence the organ-specific properties of NK cells.
PMCID: PMC3620656  PMID: 21941294
7.  Hantavirus-infection Confers Resistance to Cytotoxic Lymphocyte-Mediated Apoptosis 
PLoS Pathogens  2013;9(3):e1003272.
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS)), both human diseases with high case-fatality rates. Endothelial cells are the main targets for hantaviruses. An intriguing observation in patients with HFRS and HCPS is that on one hand the virus infection leads to strong activation of CD8 T cells and NK cells, on the other hand no obvious destruction of infected endothelial cells is observed. Here, we provide an explanation for this dichotomy by showing that hantavirus-infected endothelial cells are protected from cytotoxic lymphocyte-mediated induction of apoptosis. When dissecting potential mechanisms behind this phenomenon, we discovered that the hantavirus nucleocapsid protein inhibits the enzymatic activity of both granzyme B and caspase 3. This provides a tentative explanation for the hantavirus-mediated block of cytotoxic granule-mediated apoptosis-induction, and hence the protection of infected cells from cytotoxic lymphocytes. These findings may explain why infected endothelial cells in hantavirus-infected patients are not destroyed by the strong cytotoxic lymphocyte response.
Author Summary
Rodent-born hantaviruses cause two severe emerging diseases with high case-fatality rates in humans; hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardio-pulmonary syndrome (HCPS; also called hantavirus pulmonary syndrome (HPS)) in the Americas. A hallmark of HFRS/HCPS is increased vascular permeability. While endothelial cells are the main targets for hantaviruses, infection per se is not lytic. Patients suffering from HFRS and HCPS show remarkable strong cytotoxic lymphocyte responses including high numbers of activated NK cells and antigen-specific CD8 T cells. Hence, it has been suggested that cytotoxic lymphocyte-mediated killing of hantavirus-infected endothelial cells might contribute to HFRS/HCPS-pathogenesis. Here, we show that hantaviruses protect infected endothelial cells from being killed by cytotoxic lymphocytes. Further, we also show that hantaviruses inhibit apoptosis in general. Hantaviruses are negative-stranded RNA viruses encoding four structural proteins. Interestingly, the nucleocapsid protein was shown to inhibit the enzymatic functions of both granzyme B and caspase 3, two enzymes crucial for cytotoxic lymphocyte-mediated killing of virus-infected cells. Our study provides new insights into the interactions between hantaviruses, infected cells, and cytotoxic lymphocytes, and argues against a role for cytotoxic lymphocyte-mediated killing of virus-infected endothelial cells in causing HFRS/HCPS.
PMCID: PMC3610645  PMID: 23555267
8.  NKG2D performs two functions in invariant NKT cells: Direct TCR-independent activation of NK-like cytolysis, and co-stimulation of activation by CD1d 
European journal of immunology  2011;41(7):1913-1923.
Invariant NKT cells are important in the activation and regulation of immune responses. They can also function as CD1d-restricted killer cells. However, the role of activating innate NK cell receptors expressed on NKT cells in triggering cytolytic function is poorly characterized. Here, we initially confirmed that the cellular stress-ligand receptor NKG2D is expressed on CD4− NKT cells, whereas most CD4+ NKT cells lack this receptor. Interestingly, NKG2D+ NKT cells frequently expressed perforin, and both NKG2D and perforin localized at the site of contact with NKG2D ligand-expressing target cells. CD4− NKT cells degranulated in response to NKG2D engagement in a redirected activation assay independently of stimulation via their invariant TCR. NKT cells killed P815 cells coated with anti-NKG2D mAb and CD1d-negative K562 tumor target cells in an NKG2D-dependent manner. Furthermore, NKG2D engagement co-stimulated TCR-mediated NKT cell activation in response to endogenous CD1d-presented ligands or suboptimal levels of anti-CD3 triggering. These data indicate that the CD4− subset of human NKT cells can mediate direct lysis of target cells via NKG2D engagement independently of CD1d, and that NKG2D also functions as a co-stimulatory receptor in these cells. NKG2D thus plays both a direct and a co-stimulatory role in the activation of NKT cells.
PMCID: PMC3523190  PMID: 21590763
CD1d; NKT cells; NK cells; Innate immunity
9.  Longitudinal Analysis of the Human T Cell Response during Acute Hantavirus Infection ▿ †  
Journal of Virology  2011;85(19):10252-10260.
Longitudinal studies of T cell immune responses during viral infections in humans are essential for our understanding of how effector T cell responses develop, clear infection, and provide long-lasting immunity. Here, following an outbreak of a Puumala hantavirus infection in the human population, we longitudinally analyzed the primary CD8 T cell response in infected individuals from the first onset of clinical symptoms until viral clearance. A vigorous CD8 T cell response was observed early following the onset of clinical symptoms, determined by the presence of high numbers of Ki67+CD38+HLA-DR+ effector CD8 T cells. This response encompassed up to 50% of total blood CD8 T cells, and it subsequently contracted in parallel with a decrease in viral load. Expression levels of perforin and granzyme B were high throughout the initial T cell response and likewise normalized following viral clearance. When monitoring regulatory components, no induction of regulatory CD4 or CD8 T cells was observed in the patients during the infection. However, CD8 as well as CD4 T cells exhibited a distinct expression profile of inhibitory PD-1 and CTLA-4 molecules. The present results provide insight into the development of the T cell response in humans, from the very onset of clinical symptoms following a viral infection to resolution of the disease.
PMCID: PMC3196424  PMID: 21795350
10.  Kinome Analysis of Receptor-Induced Phosphorylation in Human Natural Killer Cells 
PLoS ONE  2012;7(1):e29672.
Natural killer (NK) cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244) and DNAM-1 (CD226), act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome) are involved in NK cell activation.
A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2), FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated.
The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.
PMCID: PMC3251586  PMID: 22238634
11.  Characterization of Natural Killer Cell Phenotype and Function during Recurrent Human HSV-2 Infection 
PLoS ONE  2011;6(11):e27664.
Human natural killer (NK) cell differentiation, characterized by a loss of NKG2A in parallel with the acquisition of NKG2C, KIRs, and CD57 is stimulated by a number of virus infections, including infection with human cytomegalovirus (CMV), hantavirus, chikungunya virus, and HIV-1. Here, we addressed if HSV-2 infection in a similar way drives NK cell differentiation towards an NKG2A-NKG2C+KIR+CD57+ phenotype. In contrast to infection with CMV, hantavirus, chikungunya virus, and HIV-1, recurrent HSV-2 infection did not yield an accumulation of highly differentiated NK cells in human peripheral blood. This outcome indicates that human HSV-2 infection has no significant imprinting effect on the human NK cell repertoire.
PMCID: PMC3216993  PMID: 22110712
13.  Transmission of Toxoplasma gondii from Infected Dendritic Cells to Natural Killer Cells▿ †  
Infection and Immunity  2009;77(3):970-976.
The obligate intracellular parasite Toxoplasma gondii can actively infect any nucleated cell type, including cells from the immune system. In the present study, we observed that a large number of natural killer (NK) cells were infected by T. gondii early after intraperitoneal inoculation of parasites into C57BL/6 mice. Interestingly, one mechanism of NK cell infection involved NK cell-mediated targeting of infected dendritic cells (DC). Perforin-dependent killing of infected DC led to active egress of infectious parasites that rapidly infected adjacent effector NK cells. Infected NK cells were not efficiently targeted by other NK cells. These results suggest that rapid transfer of T. gondii from infected DC to effector NK cells may contribute to the parasite's sequestration and shielding from immune recognition shortly after infection.
PMCID: PMC2643636  PMID: 19139191
14.  Application of Nine-color Flow Cytometry for Detailed Studies of the Phenotypic Complexity and Functional Heterogeneity of Human Lymphocyte Subsets 
Journal of immunological methods  2007;330(1-2):64-74.
Innate and adaptive cellular immunity is initiated, directed and regulated by a vast array of cell surface receptors. Attempts to harness the cellular immune system in translational settings such as immunotherapy and vaccine development require tools to accurately describe and isolate lymphocytes with specific characteristics. One such tool, flow cytometry, is undergoing a revolution in instrumentation and reagents, providing opportunities for high resolution phenotypic and functional analysis of lymphocytes. Here, we demonstrate how nine-color flow cytometry can be adapted, optimized and applied to investigate the phenotypic complexity and functional heterogeneity of human lymphocyte subsets. We provide examples of studies of adaptive T cell responses against viruses, as well as the assessment of CD1d-restricted NKT cells and NK cells. We discuss the importance of this technology for detailed investigations of lymphocyte subsets in studies of infectious diseases and cancer.
PMCID: PMC2268636  PMID: 18083186
Flow cytometry; FACS; T cells; NKT cells; NK cells; CD1d; Fluorochromes
15.  Expression, refolding and crystallization of murine MHC class I H-2Db in complex with human β2-microglobulin 
Mouse MHC class I H-2Db in complex with human β2m and the LCMV-derived peptide gp33 has been produced and crystallized. Resolution of the structure of this complex combined with the structural comparison with the previously solved crystal structure of H-2Db/mβ2m/gp33 should lead to a better understanding of how the β2m subunit affects the overall conformation of MHC complexes as well as the stability of the presented peptides.
β2-Microglobulin (β2m) is non-covalently linked to the major histocompatibility (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I can bind human β2m (hβ2m) and such hybrid molecules are often used in structural and functional studies. The replacement of mouse β2m (mβ2m) by hβ2m has important functional consequences for MHC class I complex stability and specificity, but the structural basis for this is unknown. To investigate the impact of species-specific β2m subunits on MHC class I conformation, murine MHC class I H-2Db in complex with hβ2m and the peptide gp33 derived from lymphocytic choriomeningitis virus (LCMV) has been expressed, refolded in vitro and crystallized. Crystals containing two complexes per asymmetric unit and belonging to the space group P21, with unit-cell parameters a = 68.1, b = 65.2, c = 101.9 Å, β = 102.4°, were obtained.
PMCID: PMC1978157  PMID: 16511243
MHC class I H-2Db; β2-microglobulin
16.  Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells 
The Journal of Experimental Medicine  2005;202(7):1001-1012.
The relative contribution to cytotoxicity of each of the multiple NK cell activation receptors has been difficult to assess. Using Drosophila insect cells, which express ligands of human NK cell receptors, we show that target cell lysis by resting NK cells is controlled by different receptor signals for cytolytic granule polarization and degranulation. Intercellular adhesion molecule (ICAM)-1 on insect cells was sufficient to induce polarization of granules, but not degranulation, in resting NK cells. Conversely, engagement of the Fc receptor CD16 by rabbit IgG on insect cells induced degranulation without specific polarization. Lysis by resting NK cells occurred when polarization and degranulation were induced by the combined presence of ICAM-1 and IgG on insect cells. Engagement of receptor 2B4 by CD48 on insect cells induced weak polarization and no degranulation. However, coengagement of 2B4 and CD16 by their respective ligands resulted in granule polarization and cytotoxicity in the absence of leukocyte functional antigen-1–mediated adhesion to target cells. These data show that cytotoxicity by resting NK cells is controlled tightly by separate or cooperative signals from different receptors for granule polarization and degranulation.
PMCID: PMC2213171  PMID: 16203869
17.  CD1d-dependent Activation of NKT Cells Aggravates Atherosclerosis 
Adaptive and innate immunity have been implicated in the pathogenesis of atherosclerosis. Given their abundance in the lesion, lipids might be targets of the atherosclerosis-associated immune response. Natural killer T (NKT) cells can recognize lipid antigens presented by CD1 molecules. We have explored the role of CD1d-restricted NKT cells in atherosclerosis by using apolipoprotein E–deficient (apoE−/−) mice, a hypercholesterolemic mouse model that develops atherosclerosis. ApoE−/− mice crossed with CD1d−/− (CD1d−/−apoE−/−) mice exhibited a 25% decrease in lesion size compared with apoE−/− mice. Administration of α-galactosylceramide, a synthetic glycolipid that activates NKT cells via CD1d, induced a 50% increase in lesion size in apoE−/− mice, whereas it did not affect lesion size in apoE−/−CD1d−/− mice. Treatment was accompanied by an early burst of cytokines (IFNγ, MCP-1, TNFα, IL-2, IL-4, IL-5, and IL-6) followed by sustained increases in IFNγ and IL-4 transcripts in the spleen and aorta. Early activation of both T and B cells was followed by recruitment of T and NKT cells to the aorta and activation of inflammatory genes. These results show that activation of CD1d-restricted NKT cells exacerbates atherosclerosis.
PMCID: PMC2211791  PMID: 14744994
α-galactosylceramide; cytokines; inflammation; apolipoprotein E; mice
18.  Scrapie Protein Degradation by Cysteine Proteases in CD11c+ Dendritic Cells and GT1-1 Neuronal Cells 
Journal of Virology  2004;78(9):4776-4782.
Dendritic cells (DC) of the CD11c+ myeloid phenotype have been implicated in the spread of scrapie in the host. Previously, we have shown that CD11c+ DC can cause a rapid degradation of proteinase K-resistant prion proteins (PrPSc) in vitro, indicating a possible role of these cells in the clearance of PrPSc. To determine the mechanisms of PrPSc degradation, CD11c+ DC that had been exposed to PrPSc derived from a neuronal cell line (GT1-1) infected with scrapie (ScGT1-1) were treated with a battery of protease inhibitors. Following treatment with the cysteine protease inhibitors (2S,3S)-trans-epoxysuccinyl-l-leucylamido-3-methylbutane (E-64c), its ethyl ester (E-64d), and leupeptin, the degradation of PrPSc was inhibited, while inhibitors of serine and aspartic and metalloproteases (aprotinin, pepstatin, and phosphoramidon) had no effect. An endogenous degradation of PrPSc in ScGT1-1 cells was revealed by inhibiting the expression of cellular PrP (PrPC) by RNA interference, and this degradation could also be inhibited by the cysteine protease inhibitors. Our data show that PrPSc is proteolytically cleaved preferentially by cysteine proteases in both CD11c+ DC and ScGT1-1 cells and that the degradation of PrPSc by proteases is different from that of PrPC. Interference by protease inhibitors with DC-induced processing of PrPSc has the potential to modify prion spread, clearance, and immunization in a host.
PMCID: PMC387668  PMID: 15078959
19.  Processing and Degradation of Exogenous Prion Protein by CD11c+ Myeloid Dendritic Cells In Vitro 
Journal of Virology  2002;76(23):12259-12264.
The immune system plays an important role in facilitating the spread of prion infections from the periphery to the central nervous system. CD11c+ myeloid dendritic cells (DC) could, due to their subepithelial location and their migratory capacity, be early targets for prion infection and contribute to the spread of infection. In order to analyze mechanisms by which these cells may affect prion propagation, we studied in vitro the effect of exposing such DC to scrapie-infected GT1-1 cells, which produce the scrapie prion protein PrPSc. In this system, the DC efficiently engulfed the infected GT1-1 cells. Unexpectedly, PrPSc, which is generally resistant to protease digestion, was processed and rapidly degraded. Based on this observation we speculate that CD11c+ DC may play a dual role in prion infections: on one hand they may facilitate neuroinvasion by transfer of the infectious agent as suggested from in vivo studies, but on the other hand they may protect against the infection by causing an efficient degradation of PrPSc. Thus, the migrating and highly proteolytic CD11c+ myeloid DC may affect the balance between propagation and clearance of PrPSc in the organism.
PMCID: PMC136859  PMID: 12414965
20.  In Vivo Activation of Dendritic Cells and T Cells during Salmonella enterica Serovar Typhimurium Infection 
Infection and Immunity  2001;69(9):5726-5735.
The present study was initiated to gain insight into the interaction between splenic dendritic cells (DC) and Salmonella enterica serovar Typhimurium in vivo. Splenic phagocytic cell populations associated with green fluorescent protein (GFP)-expressing bacteria and the bacterium-specific T-cell response were evaluated in mice given S. enterica serovar Typhimurium expressing GFP and ovalbumin. Flow cytometry analysis revealed that GFP-positive splenic DC (CD11c+ major histocompatibility complex class II-positive [MHC-II+] cells) were present following bacterial administration, and confocal microscopy showed that GFP-expressing bacteria were contained within CD11c+ MHC-II+ splenocytes. Furthermore, splenic DC and T cells were activated following Salmonella infection. This was shown by increased surface expression of CD86 and CD40 on CD11c+ MHC-II+ cells and increased CD44 and CD69 expression on CD4+ and CD8+ T cells. Salmonella-specific gamma interferon (IFN-γ)-producing cells in both of these T-cell subsets, as well as cytolytic effector cells, were also generated in mice given live bacteria. The frequency of Salmonella-specific CD4+ T cells producing IFN-γ was greater than that of specific CD8+ T cells producing IFN-γ in the same infected animal. This supports the argument that the predominant source of IFN-γ production by cells of the specific immune response is CD4+ T cells. Finally, DC that phagocytosed live or heat-killed Salmonella in vitro primed bacterium-specific IFN-γ-producing CD4+ and CD8+ T cells as well as cytolytic effector cells following administration into naïve mice. Together these data suggest that DC are involved in priming naïve T cells to Salmonella in vivo.
PMCID: PMC98689  PMID: 11500449
21.  Natural Killer Cells Determine Development of Allergen-induced Eosinophilic Airway Inflammation in Mice  
The earliest contact between antigen and the innate immune system is thought to direct the subsequent antigen-specific T cell response. We hypothesized that cells of the innate immune system, such as natural killer (NK) cells, NK1.1+ T cells (NKT cells), and γ/δ T cells, may regulate the development of allergic airway disease. We demonstrate here that depletion of NK1.1+ cells (NK cells and NKT cells) before immunization inhibits pulmonary eosinophil and CD3+ T cell infiltration as well as increased levels of interleukin (IL)-4, IL-5, and IL-12 in bronchoalveolar lavage fluid in a murine model of allergic asthma. Moreover, systemic allergen-specific immunoglobulin (Ig)E and IgG2a levels and the number of IL-4 and interferon γ–producing splenic cells were diminished in mice depleted of NK1.1+ cells before the priming regime. Depletion of NK1.1+ cells during the challenge period only did not influence pulmonary eosinophilic inflammation. CD1d1 mutant mice, deficient in NKT cells but with normal NK cells, developed lung tissue eosinophilia and allergen-specific IgE levels not different from those observed in wild-type mice. Mice deficient in γ/δ T cells showed a mild attenuation of lung tissue eosinophilia in this model. Taken together, these findings suggest a critical role of NK cells, but not of NKT cells, for the development of allergen-induced airway inflammation, and that this effect of NK cells is exerted during the immunization. If translatable to humans, these data suggest that NK cells may be critically important for deciding whether allergic eosinophilic airway disease will develop. These observations are also compatible with a pathogenic role for the increased NK cell activity observed in human asthma.
PMCID: PMC2192913  PMID: 9927517
natural killer cells; NK1.1+ T cells; γ/δ T cells; eosinophils; allergic asthma
22.  Tracing dynamic expansion of human NK-cell subsets by high-resolution analysis of KIR repertoires and cellular differentiation 
European Journal of Immunology  2014;44(7):2192-2196.
PMCID: PMC4282447  PMID: 24723455
Differentiation; FACS; Killer cell immunoglobulin-like receptor; NKG2C; NK cells; repertoire

Results 1-22 (22)