PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (28)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains 
Katayama, Toshiaki | Wilkinson, Mark D | Aoki-Kinoshita, Kiyoko F | Kawashima, Shuichi | Yamamoto, Yasunori | Yamaguchi, Atsuko | Okamoto, Shinobu | Kawano, Shin | Kim, Jin-Dong | Wang, Yue | Wu, Hongyan | Kano, Yoshinobu | Ono, Hiromasa | Bono, Hidemasa | Kocbek, Simon | Aerts, Jan | Akune, Yukie | Antezana, Erick | Arakawa, Kazuharu | Aranda, Bruno | Baran, Joachim | Bolleman, Jerven | Bonnal, Raoul JP | Buttigieg, Pier Luigi | Campbell, Matthew P | Chen, Yi-an | Chiba, Hirokazu | Cock, Peter JA | Cohen, K Bretonnel | Constantin, Alexandru | Duck, Geraint | Dumontier, Michel | Fujisawa, Takatomo | Fujiwara, Toyofumi | Goto, Naohisa | Hoehndorf, Robert | Igarashi, Yoshinobu | Itaya, Hidetoshi | Ito, Maori | Iwasaki, Wataru | Kalaš, Matúš | Katoda, Takeo | Kim, Taehong | Kokubu, Anna | Komiyama, Yusuke | Kotera, Masaaki | Laibe, Camille | Lapp, Hilmar | Lütteke, Thomas | Marshall, M Scott | Mori, Takaaki | Mori, Hiroshi | Morita, Mizuki | Murakami, Katsuhiko | Nakao, Mitsuteru | Narimatsu, Hisashi | Nishide, Hiroyo | Nishimura, Yosuke | Nystrom-Persson, Johan | Ogishima, Soichi | Okamura, Yasunobu | Okuda, Shujiro | Oshita, Kazuki | Packer, Nicki H | Prins, Pjotr | Ranzinger, Rene | Rocca-Serra, Philippe | Sansone, Susanna | Sawaki, Hiromichi | Shin, Sung-Ho | Splendiani, Andrea | Strozzi, Francesco | Tadaka, Shu | Toukach, Philip | Uchiyama, Ikuo | Umezaki, Masahito | Vos, Rutger | Whetzel, Patricia L | Yamada, Issaku | Yamasaki, Chisato | Yamashita, Riu | York, William S | Zmasek, Christian M | Kawamoto, Shoko | Takagi, Toshihisa
The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.
doi:10.1186/2041-1480-5-5
PMCID: PMC3978116  PMID: 24495517
BioHackathon; Bioinformatics; Semantic Web; Web services; Ontology; Visualization; Knowledge representation; Databases; Semantic interoperability; Data models; Data sharing; Data integration
2.  Unraveling genomic variation from next generation sequencing data 
BioData Mining  2013;6:13.
Elucidating the content of a DNA sequence is critical to deeper understand and decode the genetic information for any biological system. As next generation sequencing (NGS) techniques have become cheaper and more advanced in throughput over time, great innovations and breakthrough conclusions have been generated in various biological areas. Few of these areas, which get shaped by the new technological advances, involve evolution of species, microbial mapping, population genetics, genome-wide association studies (GWAs), comparative genomics, variant analysis, gene expression, gene regulation, epigenetics and personalized medicine. While NGS techniques stand as key players in modern biological research, the analysis and the interpretation of the vast amount of data that gets produced is a not an easy or a trivial task and still remains a great challenge in the field of bioinformatics. Therefore, efficient tools to cope with information overload, tackle the high complexity and provide meaningful visualizations to make the knowledge extraction easier are essential. In this article, we briefly refer to the sequencing methodologies and the available equipment to serve these analyses and we describe the data formats of the files which get produced by them. We conclude with a thorough review of tools developed to efficiently store, analyze and visualize such data with emphasis in structural variation analysis and comparative genomics. We finally comment on their functionality, strengths and weaknesses and we discuss how future applications could further develop in this field.
doi:10.1186/1756-0381-6-13
PMCID: PMC3726446  PMID: 23885890
SNPs; SNVs; CNV; Structural variation; Sequencing; Genome browser; Visualization; Polymorphisms; Genome wide association studies
3.  Pipit: visualizing functional impacts of structural variations 
Bioinformatics  2013;29(17):2206-2207.
Summary: Pipit is a gene-centric interactive visualization tool designed to study structural genomic variations. Through focusing on individual genes as the functional unit, researchers are able to study and generate hypotheses on the biological impact of different structural variations, for instance, the deletion of dosage-sensitive genes or the formation of fusion genes. Pipit is a cross-platform Java application that visualizes structural variation data from Genome Variation Format files.
Availability: Executables, source code, sample data, documentation and screencast are available at https://bitbucket.org/biovizleuven/pipit.
Contact: ryo.sakai@esat.kuleuven.be
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt367
PMCID: PMC3740631  PMID: 23803468
4.  TrioVis: a visualization approach for filtering genomic variants of parent–child trios 
Bioinformatics  2013;29(14):1801-1802.
Summary: TrioVis is a visual analytics tool developed for filtering on coverage and variant frequency for genomic variants from exome sequencing of parent–child trios. In TrioVis, the variant data are organized by grouping each variant based on the laws of Mendelian inheritance. Taking three Variant Call Format files as input, TrioVis allows the user to test different coverage thresholds (i.e. different levels of stringency), to find the optimal threshold values tailored to their hypotheses and to gain insights into the global effects of filtering through interaction.
Availability: Executables, source code and sample data are available at https://bitbucket.org/biovizleuven/triovis. Screencast is available at http://vimeo.com/user6757771/triovis.
Contact: ryo.sakai@esat.kuleuven.be
doi:10.1093/bioinformatics/btt267
PMCID: PMC3702247  PMID: 23658417
5.  Meander: visually exploring the structural variome using space-filling curves 
Nucleic Acids Research  2013;41(11):e118.
The introduction of next generation sequencing methods in genome studies has made it possible to shift research from a gene-centric approach to a genome wide view. Although methods and tools to detect single nucleotide polymorphisms are becoming more mature, methods to identify and visualize structural variation (SV) are still in their infancy. Most genome browsers can only compare a given sequence to a reference genome; therefore, direct comparison of multiple individuals still remains a challenge. Therefore, the implementation of efficient approaches to explore and visualize SVs and directly compare two or more individuals is desirable. In this article, we present a visualization approach that uses space-filling Hilbert curves to explore SVs based on both read-depth and pair-end information. An interactive open-source Java application, called Meander, implements the proposed methodology, and its functionality is demonstrated using two cases. With Meander, users can explore variations at different levels of resolution and simultaneously compare up to four different individuals against a common reference. The application was developed using Java version 1.6 and Processing.org and can be run on any platform. It can be found at http://homes.esat.kuleuven.be/~bioiuser/meander.
doi:10.1093/nar/gkt254
PMCID: PMC3675473  PMID: 23605045
6.  The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies 
Background
BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research.
Results
The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization.
Conclusion
We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.
doi:10.1186/2041-1480-4-6
PMCID: PMC3598643  PMID: 23398680
BioHackathon; Open source; Software; Semantic Web; Databases; Data integration; Data visualization; Web services; Interfaces
7.  Annotate-it: a Swiss-knife approach to annotation, analysis and interpretation of single nucleotide variation in human disease 
Genome Medicine  2012;4(9):73.
The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a methodology that facilitates exploration of patient sequencing data towards identification of causal variants under different genetic hypotheses. Annotate-it facilitates handling, analysis and interpretation of high-throughput single nucleotide variant data. We demonstrate our strategy using three case studies. Annotate-it is freely available and test data are accessible to all users at http://www.annotate-it.org.
doi:10.1186/gm374
PMCID: PMC3580443  PMID: 23013645
8.  The Ruby UCSC API: accessing the UCSC genome database using Ruby 
BMC Bioinformatics  2012;13:240.
Background
The University of California, Santa Cruz (UCSC) genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser) and several means for programmatic queries. A simple application programming interface (API) in a scripting language aimed at the biologist was however not yet available. Here, we present the Ruby UCSC API, a library to access the UCSC genome database using Ruby.
Results
The API is designed as a BioRuby plug-in and built on the ActiveRecord 3 framework for the object-relational mapping, making writing SQL statements unnecessary. The current version of the API supports databases of all organisms in the UCSC genome database including human, mammals, vertebrates, deuterostomes, insects, nematodes, and yeast.
The API uses the bin index—if available—when querying for genomic intervals. The API also supports genomic sequence queries using locally downloaded *.2bit files that are not stored in the official MySQL database. The API is implemented in pure Ruby and is therefore available in different environments and with different Ruby interpreters (including JRuby).
Conclusions
Assisted by the straightforward object-oriented design of Ruby and ActiveRecord, the Ruby UCSC API will facilitate biologists to query the UCSC genome database programmatically. The API is available through the RubyGem system. Source code and documentation are available at https://github.com/misshie/bioruby-ucsc-api/ under the Ruby license. Feedback and help is provided via the website at http://rubyucscapi.userecho.com/.
doi:10.1186/1471-2105-13-240
PMCID: PMC3542311  PMID: 22994508
9.  CEP152 is a genome maintenance protein disrupted in Seckel syndrome 
Nature genetics  2010;43(1):23-26.
Functional impairment of DNA damage response pathways leads to increased genomic instability. Here we describe the centrosomal protein CEP152 as a new regulator of genomic integrity and cellular response to DNA damage. Using homozygosity mapping and exome sequencing, we identified CEP152 mutations in Seckel syndrome and showed that impaired CEP152 function leads to accumulation of genomic defects resulting from replicative stress through enhanced activation of ATM signaling and increased H2AX phosphorylation.
doi:10.1038/ng.725
PMCID: PMC3430850  PMID: 21131973
11.  Exome Sequencing and Genetic Testing for MODY 
PLoS ONE  2012;7(5):e38050.
Context
Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive.
Objective
The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results.
Research Design and Methods
We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism.
Results
On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0–4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively), thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes.
Conclusion
Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized.
doi:10.1371/journal.pone.0038050
PMCID: PMC3360646  PMID: 22662265
12.  An eQTL biological data visualization challenge and approaches from the visualization community 
BMC Bioinformatics  2012;13(Suppl 8):S8.
In 2011, the IEEE VisWeek conferences inaugurated a symposium on Biological Data Visualization. Like other domain-oriented Vis symposia, this symposium's purpose was to explore the unique characteristics and requirements of visualization within the domain, and to enhance both the Visualization and Bio/Life-Sciences communities by pushing Biological data sets and domain understanding into the Visualization community, and well-informed Visualization solutions back to the Biological community. Amongst several other activities, the BioVis symposium created a data analysis and visualization contest. Unlike many contests in other venues, where the purpose is primarily to allow entrants to demonstrate tour-de-force programming skills on sample problems with known solutions, the BioVis contest was intended to whet the participants' appetites for a tremendously challenging biological domain, and simultaneously produce viable tools for a biological grand challenge domain with no extant solutions. For this purpose expression Quantitative Trait Locus (eQTL) data analysis was selected. In the BioVis 2011 contest, we provided contestants with a synthetic eQTL data set containing real biological variation, as well as a spiked-in gene expression interaction network influenced by single nucleotide polymorphism (SNP) DNA variation and a hypothetical disease model. Contestants were asked to elucidate the pattern of SNPs and interactions that predicted an individual's disease state. 9 teams competed in the contest using a mixture of methods, some analytical and others through visual exploratory methods. Independent panels of visualization and biological experts judged entries. Awards were given for each panel's favorite entry, and an overall best entry agreed upon by both panels. Three special mention awards were given for particularly innovative and useful aspects of those entries. And further recognition was given to entries that correctly answered a bonus question about how a proposed "gene therapy" change to a SNP might change an individual's disease status, which served as a calibration for each approaches' applicability to a typical domain question. In the future, BioVis will continue the data analysis and visualization contest, maintaining the philosophy of providing new challenging questions in open-ended and dramatically underserved Bio/Life Sciences domains.
doi:10.1186/1471-2105-13-S8-S8
PMCID: PMC3355334  PMID: 22607587
13.  Origins and functional impact of copy number variation in the human genome 
Nature  2009;464(7289):704-712.
Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.
doi:10.1038/nature08516
PMCID: PMC3330748  PMID: 19812545
14.  Arena3D: visualizing time-driven phenotypic differences in biological systems 
BMC Bioinformatics  2012;13:45.
Background
Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes.
Results
Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene lsm14a in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets.
Conclusions
We present a new visualization approach for perturbation screens with multiple phenotypic outcomes. The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of charge for academics as a downloadable standalone application from: http://arena3d.org/.
doi:10.1186/1471-2105-13-45
PMCID: PMC3368716  PMID: 22439608
15.  Biogem: an effective tool-based approach for scaling up open source software development in bioinformatics 
Bioinformatics  2012;28(7):1035-1037.
Summary: Biogem provides a software development environment for the Ruby programming language, which encourages community-based software development for bioinformatics while lowering the barrier to entry and encouraging best practices.
Biogem, with its targeted modular and decentralized approach, software generator, tools and tight web integration, is an improved general model for scaling up collaborative open source software development in bioinformatics.
Availability: Biogem and modules are free and are OSS. Biogem runs on all systems that support recent versions of Ruby, including Linux, Mac OS X and Windows. Further information at http://www.biogems.info. A tutorial is available at http://www.biogems.info/howto.html
Contact: bonnal@ingm.org
doi:10.1093/bioinformatics/bts080
PMCID: PMC3315718  PMID: 22332238
16.  Which clustering algorithm is better for predicting protein complexes? 
BMC Research Notes  2011;4:549.
Background
Protein-Protein interactions (PPI) play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks.
Results
In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H) and Tandem Affinity Purification (TAP) methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases.
Conclusions
While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm
doi:10.1186/1756-0500-4-549
PMCID: PMC3267700  PMID: 22185599
17.  A Ruby API to query the Ensembl database for genomic features 
Bioinformatics  2011;27(7):1013-1014.
Summary: The Ensembl database makes genomic features available via its Genome Browser. It is also possible to access the underlying data through a Perl API for advanced querying. We have developed a full-featured Ruby API to the Ensembl databases, providing the same functionality as the Perl interface with additional features. A single Ruby API is used to access different releases of the Ensembl databases and is also able to query multi-species databases.
Availability and Implementation: Most functionality of the API is provided using the ActiveRecord pattern. The library depends on introspection to make it release independent. The API is available through the Rubygem system and can be installed with the command gem install ruby-ensembl-api.
Contact: jan.aerts@esat.kuleuven.be
doi:10.1093/bioinformatics/btr050
PMCID: PMC3065687  PMID: 21278190
18.  Meeting Report from the Second “Minimum Information for Biological and Biomedical Investigations” (MIBBI) workshop 
Standards in Genomic Sciences  2010;3(3):259-266.
This report summarizes the proceedings of the second workshop of the ‘Minimum Information for Biological and Biomedical Investigations’ (MIBBI) consortium held on Dec 1-2, 2010 in Rüdesheim, Germany through the sponsorship of the Beilstein-Institute. MIBBI is an umbrella organization uniting communities developing Minimum Information (MI) checklists to standardize the description of data sets, the workflows by which they were generated and the scientific context for the work. This workshop brought together representatives of more than twenty communities to present the status of their MI checklists and plans for future development. Shared challenges and solutions were identified and the role of MIBBI in MI checklist development was discussed. The meeting featured some thirty presentations, wide-ranging discussions and breakout groups. The top outcomes of the two-day workshop as defined by the participants were: 1) the chance to share best practices and to identify areas of synergy; 2) defining a series of tasks for updating the MIBBI Portal; 3) reemphasizing the need to maintain independent MI checklists for various communities while leveraging common terms and workflow elements contained in multiple checklists; and 4) revision of the concept of the MIBBI Foundry to focus on the creation of a core set of MIBBI modules intended for reuse by individual MI checklist projects while maintaining the integrity of each MI project. Further information about MIBBI and its range of activities can be found at http://mibbi.org/.
doi:10.4056/sigs.147362
PMCID: PMC3035314  PMID: 21304730
19.  BioRuby: bioinformatics software for the Ruby programming language 
Bioinformatics  2010;26(20):2617-2619.
Summary: The BioRuby software toolkit contains a comprehensive set of free development tools and libraries for bioinformatics and molecular biology, written in the Ruby programming language. BioRuby has components for sequence analysis, pathway analysis, protein modelling and phylogenetic analysis; it supports many widely used data formats and provides easy access to databases, external programs and public web services, including BLAST, KEGG, GenBank, MEDLINE and GO. BioRuby comes with a tutorial, documentation and an interactive environment, which can be used in the shell, and in the web browser.
Availability: BioRuby is free and open source software, made available under the Ruby license. BioRuby runs on all platforms that support Ruby, including Linux, Mac OS X and Windows. And, with JRuby, BioRuby runs on the Java Virtual Machine. The source code is available from http://www.bioruby.org/.
Contact: katayama@bioruby.org
doi:10.1093/bioinformatics/btq475
PMCID: PMC2951089  PMID: 20739307
20.  The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium* 
Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies.
doi:10.1186/2041-1480-1-8
PMCID: PMC2939597  PMID: 20727200
21.  Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project 
Nature biotechnology  2008;26(8):889-896.
The Minimum Information for Biological and Biomedical Investigations (MIBBI) project provides a resource for those exploring the range of extant minimum information checklists and fosters coordinated development of such checklists.
doi:10.1038/nbt.1411
PMCID: PMC2771753  PMID: 18688244
22.  An introduction to scripting in Ruby for biologists 
BMC Bioinformatics  2009;10:221.
The Ruby programming language has a lot to offer to any scientist with electronic data to process. Not only is the initial learning curve very shallow, but its reflection and meta-programming capabilities allow for the rapid creation of relatively complex applications while still keeping the code short and readable. This paper provides a gentle introduction to this scripting language for researchers without formal informatics training such as many wet-lab scientists. We hope this will provide such researchers an idea of how powerful a tool Ruby can be for their data management tasks and encourage them to learn more about it.
doi:10.1186/1471-2105-10-221
PMCID: PMC2722653  PMID: 19607723
23.  Genomic analysis reveals extensive gene duplication within the bovine TRB locus 
BMC Genomics  2009;10:192.
Background
Diverse TR and IG repertoires are generated by V(D)J somatic recombination. Genomic studies have been pivotal in cataloguing the V, D, J and C genes present in the various TR/IG loci and describing how duplication events have expanded the number of these genes. Such studies have also provided insights into the evolution of these loci and the complex mechanisms that regulate TR/IG expression. In this study we analyze the sequence of the third bovine genome assembly to characterize the germline repertoire of bovine TRB genes and compare the organization, evolution and regulatory structure of the bovine TRB locus with that of humans and mice.
Results
The TRB locus in the third bovine genome assembly is distributed over 5 scaffolds, extending to ~730 Kb. The available sequence contains 134 TRBV genes, assigned to 24 subgroups, and 3 clusters of DJC genes, each comprising a single TRBD gene, 5–7 TRBJ genes and a single TRBC gene. Seventy-nine of the TRBV genes are predicted to be functional. Comparison with the human and murine TRB loci shows that the gene order, as well as the sequences of non-coding elements that regulate TRB expression, are highly conserved in the bovine. Dot-plot analyses demonstrate that expansion of the genomic TRBV repertoire has occurred via a complex and extensive series of duplications, predominantly involving DNA blocks containing multiple genes. These duplication events have resulted in massive expansion of several TRBV subgroups, most notably TRBV6, 9 and 21 which contain 40, 35 and 16 members respectively. Similarly, duplication has lead to the generation of a third DJC cluster. Analyses of cDNA data confirms the diversity of the TRBV genes and, in addition, identifies a substantial number of TRBV genes, predominantly from the larger subgroups, which are still absent from the genome assembly. The observed gene duplication within the bovine TRB locus has created a repertoire of phylogenetically diverse functional TRBV genes, which is substantially larger than that described for humans and mice.
Conclusion
The analyses completed in this study reveal that, although the gene content and organization of the bovine TRB locus are broadly similar to that of humans and mice, multiple duplication events have led to a marked expansion in the number of TRB genes. Similar expansions in other ruminant TR loci suggest strong evolutionary pressures in this lineage have selected for the development of enlarged sets of TR genes that can contribute to diverse TR repertoires.
doi:10.1186/1471-2164-10-192
PMCID: PMC2685407  PMID: 19393068
24.  An assessment of population structure in eight breeds of cattle using a whole genome SNP panel 
BMC Genetics  2008;9:37.
Background
Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is possible to perform genome wide population genetic analyses in cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among eight cattle breeds sampled from Bos indicus and Bos taurus.
Results
Two thousand six hundred and forty one single nucleotide polymorphisms (SNPs) spanning all of the bovine autosomal genome were genotyped in Angus, Brahman, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black, Limousin and Nelore cattle. Population structure was examined using the linkage model in the program STRUCTURE and Fst estimates were used to construct a neighbor-joining tree to represent the phylogenetic relationship among these breeds.
Conclusion
The whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. The greatest level of genetic differentiation was detected between the Bos taurus and Bos indicus breeds. When the Bos indicus breeds were excluded from the analysis, genetic differences among beef versus dairy and European versus Asian breeds were detected among the Bos taurus breeds. Exploration of the number of SNP loci required to differentiate between breeds showed that for 100 SNP loci, individuals could only be correctly clustered into breeds 50% of the time, thus a large number of SNP markers are required to replace the 30 microsatellite markers that are currently commonly used in genetic diversity studies.
doi:10.1186/1471-2156-9-37
PMCID: PMC2408608  PMID: 18492244
25.  Whole genome linkage disequilibrium maps in cattle 
BMC Genetics  2007;8:74.
Background
Bovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides background information concerning the extent of long range linkage disequilibrium in cattle.
Results
Linkage disequilibrium was assessed using r2 among all pairs of syntenic markers within eight breeds of cattle from the Bos taurus and Bos indicus subspecies. Bos taurus breeds included Angus, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black and Limousin while Bos indicus breeds included Brahman and Nelore. Approximately 2670 markers spanning the entire bovine autosomal genome were used to estimate pairwise r2 values. We found that the extent of linkage disequilibrium is no more than 0.5 Mb in these eight breeds of cattle.
Conclusion
Linkage disequilibrium in cattle has previously been reported to extend several tens of centimorgans. Our results, based on a much larger sample of marker loci and across eight breeds of cattle indicate that in cattle linkage disequilibrium persists over much more limited distances. Our findings suggest that 30,000–50,000 loci will be needed to conduct whole genome association studies in cattle.
doi:10.1186/1471-2156-8-74
PMCID: PMC2174945  PMID: 17961247

Results 1-25 (28)