PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth 
PLoS Genetics  2014;10(10):e1004750.
The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.
Author Summary
All animals need adequate nutrition to grow and develop. Studies in tissue culture and model organisms have identified the TOR kinase signaling pathway as a key nutrient-dependent regulator of growth. Under nutrient rich conditions, TOR kinase is active and stimulates metabolic processes that drive growth. Under nutrient poor conditions, TOR is inhibited and animals alter their metabolism to maintain homeostasis and survival. Here we use Drosophila larvae to identify a role for ribosome synthesis—a key metabolic process—in mediating nutrient and TOR effects on body growth. In particular, we show that ribosome synthesis specifically in larval muscle is necessary to maintain organismal growth. We find that inhibition of muscle ribosome synthesis leads to reduced systemic insulin-like growth factor signaling via two endocrine responses—decreased expression of brain derived Drosophila insulin-like peptides (dILPs) and increased expression of Imp-L2, an inhibitor of insulin signaling. As a result of these effects, body growth is reduced and larval development is delayed. These findings suggest that control of ribosome synthesis, and hence protein synthesis, in specific tissues can exert control on overall body growth.
doi:10.1371/journal.pgen.1004750
PMCID: PMC4214618  PMID: 25356674
2.  Control of Sexual Differentiation and Behavior by the doublesex gene in Drosophila melanogaster 
Nature neuroscience  2010;13(4):458-466.
Doublesex proteins, part of the structurally and functionally conserved Dmrt gene family, play essential roles in sex determination throughout the animal kingdom. We targeted the insertion of GAL4 into the doublesex (dsx) locus of Drosophila melanogaster, allowing visualization and manipulation of dsx cells in various tissues. In the nervous system, significant differences between the sexes were detected in dsx neuronal numbers, axonal projections, and synaptic density. We show that dsx is required for the development of male-specific neurons that co-express fruitless (fru), a key regulator of male sexual behavior. We propose that both dsx and fru act together to form the neuronal framework necessary for male sexual behavior. Significantly, we show that disrupting dsx neuronal function has profound effects on male sexual behavior. Furthermore, we demonstrate a role for dsx neurons in pre- through to post-copulatory female reproductive behaviors.
doi:10.1038/nn.2515
PMCID: PMC3092424  PMID: 20305646
3.  The Sex-Determination Genes fruitless and doublesex Specify a Neural Substrate Required for Courtship Song 
Current biology : CB  2007;17(17):1473-1478.
Summary
Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1-6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions, the mesothoracic ganglion (Msg), revealed the coexpression of two sex-determination genes, fruitless (fru) and doublesex (dsx). Because both genes are involved in creating a sexually dimorphic CNS [8, 9] and are necessary for song production [10-13], we investigated the individual contributions of fru and dsx to the specification of a male CNS and song production. We show a novel requirement for dsx in specifying a sexually dimorphic population of fru-expressing neurons in the Msg. Moreover, by using females constitutively expressing the male-specific isoforms of fru (FruM), we show a critical requirement for the male isoform of dsx (DsxM), alongside FruM, in the specification of courtship song. Therefore, although FruM expression is sufficient for the performance of many male-specific behaviors [14], we have shown that without DsxM, the determination of a male-specific CNS and thus a full complement of male behaviors are not realized.
doi:10.1016/j.cub.2007.07.047
PMCID: PMC2583281  PMID: 17716899
4.  The Sex-Determination Genes fruitless and doublesex Specify a Neural Substrate Required for Courtship Song 
Current Biology  2007;17(17-3):1473-1478.
Summary
Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1–6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions, the mesothoracic ganglion (Msg), revealed the coexpression of two sex-determination genes, fruitless (fru) and doublesex (dsx). Because both genes are involved in creating a sexually dimorphic CNS [8, 9] and are necessary for song production [10–13], we investigated the individual contributions of fru and dsx to the specification of a male CNS and song production. We show a novel requirement for dsx in specifying a sexually dimorphic population of fru-expressing neurons in the Msg. Moreover, by using females constitutively expressing the male-specific isoforms of fru (FruM), we show a critical requirement for the male isoform of dsx (DsxM), alongside FruM, in the specification of courtship song. Therefore, although FruM expression is sufficient for the performance of many male-specific behaviors [14], we have shown that without DsxM, the determination of a male-specific CNS and thus a full complement of male behaviors are not realized.
doi:10.1016/j.cub.2007.07.047
PMCID: PMC2583281  PMID: 17716899
SYSNEURO

Results 1-4 (4)