PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
2.  Male-Specific Fruitless Isoforms Target Neurodevelopmental Genes to Specify a Sexually Dimorphic Nervous System 
Current Biology  2014;24(3):229-241.
Summary
Background
In Drosophila, male courtship behavior is regulated in large part by the gene fruitless (fru). fru encodes a set of putative transcription factors that promote male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. Little is known about how Fru proteins function at the level of transcriptional regulation or the role that isoform diversity plays in the formation of a male-specific nervous system.
Results
To characterize the roles of sex-specific Fru isoforms in specifying male behavior, we generated novel isoform-specific mutants and used a genomic approach to identify direct Fru isoform targets during development. We demonstrate that all Fru isoforms directly target genes involved in the development of the nervous system, with individual isoforms exhibiting unique binding specificities. We observe that fru behavioral phenotypes are specified by either a single isoform or a combination of isoforms. Finally, we illustrate the utility of these data for the identification of novel sexually dimorphic genomic enhancers and novel downstream regulators of male sexual behavior.
Conclusions
These findings suggest that Fru isoform diversity facilitates both redundancy and specificity in gene expression, and that the regulation of neuronal developmental genes may be the most ancient and conserved role of fru in the specification of a male-specific nervous system.
Highlights
•Isoform-specific fru mutants reveal both functional redundancy and specificity•Fru isoform-specific genomic occupancy is characterized in the Drosophila nervous system•All Fru isoforms directly target neuronal morphogenesis genes•Isoform-specific motifs are associated with specific Fru isoform occupancy
Neville et al. characterize the roles of sex-specific Fruitless isoforms in specifying male behavior in Drosophila by generating novel isoform-specific mutants, along with using a genomic approach to identify direct Fruitless isoform targets during development.
doi:10.1016/j.cub.2013.11.035
PMCID: PMC3969260  PMID: 24440396
3.  Sex-specific responses to sexual familiarity, and the role of olfaction in Drosophila 
Studies of mating preferences have largely neglected the potential effects of individuals encountering their previous mates (‘directly sexually familiar’), or new mates that share similarities to previous mates, e.g. from the same family and/or environment (‘phenotypically sexually familiar’). Here, we show that male and female Drosophila melanogaster respond to the direct and phenotypic sexual familiarity of potential mates in fundamentally different ways. We exposed a single focal male or female to two potential partners. In the first experiment, one potential partner was novel (not previously encountered) and one was directly familiar (their previous mate); in the second experiment, one potential partner was novel (unrelated, and from a different environment from the previous mate) and one was phenotypically familiar (from the same family and rearing environment as the previous mate). We found that males preferentially courted novel females over directly or phenotypically familiar females. By contrast, females displayed a weak preference for directly and phenotypically familiar males over novel males. Sex-specific responses to the familiarity of potential mates were significantly weaker or absent in Orco1 mutants, which lack a co-receptor essential for olfaction, indicating a role for olfactory cues in mate choice over novelty. Collectively, our results show that direct and phenotypic sexual familiarity is detected through olfactory cues and play an important role in sex-specific sexual behaviour.
doi:10.1098/rspb.2013.1691
PMCID: PMC3790479  PMID: 24068355
Coolidge effect; individual recognition; genetic relatedness; Orco; Drosophila melanogaster
4.  Genetic Control of Courtship Behavior in the Housefly: Evidence for a Conserved Bifurcation of the Sex-Determining Pathway 
PLoS ONE  2013;8(4):e62476.
In Drosophila melanogaster, genes of the sex-determination hierarchy orchestrate the development and differentiation of sex-specific tissues, establishing sex-specific physiology and neural circuitry. One of these sex-determination genes, fruitless (fru), plays a key role in the formation of neural circuits underlying Drosophila male courtship behavior. Conservation of fru gene structure and sex-specific expression has been found in several insect orders, though it is still to be determined whether a male courtship role for the gene is employed in these species due to the lack of mutants and homologous experimental evidence. We have isolated the fru ortholog (Md-fru) from the common housefly, Musca domestica, and show the gene’s conserved genomic structure. We demonstrate that male-specific Md-fru transcripts arise by conserved mechanisms of sex-specific splicing. Here we show that Md-fru, is similarly involved in controlling male courtship behavior. A male courtship behavioral function for Md-fru was revealed by the behavioral and neuroanatomical analyses of a hypomorphic allele, Md-traman, which specifically disrupted the expression of Md-fru in males, leading to severely impaired male courtship behavior. In line with a role in nervous system development, we found that expression of Md-fru was confined to neural tissues in the brain, most prominently in optic neuropil and in peripheral sensory organs. We propose that, like in Drosophila, overt sexual differentiation of the housefly depends on a sex-determining pathway that bifurcates downstream of the Md-tra gene to coordinate dimorphic development of non-neuronal tissues mediated by Md-dsx with that of neuronal tissues largely mediated by Md-fru.
doi:10.1371/journal.pone.0062476
PMCID: PMC3632534  PMID: 23630634
5.  Courtship behavior in Drosophila melanogaster: towards a ‘courtship connectome’ 
Highlights
► Drosophila is a useful model for mapping neuronal circuitry underlying sexual behavior. ► We review studies aimed at identifying the cellular components of courtship neural circuits. ► Mapping function in circuits defines causal relationships between neural activity and behavior. ► Optogenetic and thermogenetic strategies have been pivotal for the identification of command elements capable of eliciting courtship.
The construction of a comprehensive structural, and importantly functional map of the network of elements and connections forming the brain represents the Holy Grail for research groups working in disparate disciplines. Although technical limitations have restricted the mapping of human and mouse ‘connectomes’ to the level of brain regions, a finer degree of functional resolution is attainable in the fruit fly, Drosophila melanogaster, due to the armamentarium of genetic tools available for this model organism. Currently, one of the most amenable approaches employed by Drosophila neurobiologists involves mapping neuronal circuitry underlying complex innate behaviors – courtship being a classic paradigm. We discuss recent studies aimed at identifying the cellular components of courtship neural circuits, mapping function in these circuits and defining causal relationships between neural activity and behavior.
doi:10.1016/j.conb.2012.09.002
PMCID: PMC3563961  PMID: 23021897
6.  Substrate-Borne Vibratory Communication during Courtship in Drosophila melanogaster 
Current Biology  2012;22(22):2180-2185.
Summary
Courtship in Drosophila melanogaster has become an iconic example of an innate and interactive series of behaviors [1–11]. The female signals her acceptance of copulation by becoming immobile in response to a male's display of stereotyped actions. The male and female communicate via vision, air-borne sounds, and pheromones [1, 2], but what triggers the female's immobility is undetermined. Here, we describe an overlooked and important component of Drosophila courtship. Video recordings and laser vibrometry show that the male abdomen shakes (“quivers”), generating substrate-borne vibrations at about six pulses per second. We present evidence that the female becomes receptive and stops walking because she senses these vibrations, rather than as a response to air-borne songs produced by the male fluttering the wings [1, 2, 12]. We also present evidence that the neural circuits expressing the sex-determination genes fruitless and doublesex [8] drive quivering behavior. These abdominal quivers and associated vibrations, as well as their effect on female receptivity, are conserved in other Drosophila species. Substrate-borne vibrations are an ancient form of communication that is widespread in animals. Our findings in Drosophila open a door to study the neuromuscular circuitry responsible for these signals and the sensory systems needed for their reception.
Highlights
► Courting Drosophila males vibrate their abdomen generating substrate-borne signals ► Females respond to these signals by stopping movement, to allow copulation ► This substrate-borne mode of communication is conserved among Drosophila species ► fruitless and doublesex expressing neurons underlie the abdominal vibration behavior
doi:10.1016/j.cub.2012.09.042
PMCID: PMC3502867  PMID: 23103187
7.  Neural Circuitry Underlying Drosophila Female Postmating Behavioral Responses 
Current Biology  2012;22(13):1155-1165.
Summary
Background
After mating, Drosophila females undergo a remarkable phenotypic switch resulting in decreased sexual receptivity and increased egg laying. Transfer of male sex peptide (SP) during copulation mediates these postmating responses via sensory neurons that coexpress the sex-determination gene fruitless (fru) and the proprioceptive neuronal marker pickpocket (ppk) in the female reproductive system. Little is known about the neuronal pathways involved in relaying SP-sensory information to central circuits and how these inputs are processed to direct female-specific changes that occur in response to mating.
Results
We demonstrate an essential role played by neurons expressing the sex-determination gene doublesex (dsx) in regulating the female postmating response. We uncovered shared circuitry between dsx and a subset of the previously described SP-responsive fru+/ppk+-expressing neurons in the reproductive system. In addition, we identified sexually dimorphic dsx circuitry within the abdominal ganglion (Abg) critical for mediating postmating responses. Some of these dsx neurons target posterior regions of the brain while others project onto the uterus.
Conclusions
We propose that dsx-specified circuitry is required to induce female postmating behavioral responses, from sensing SP to conveying this signal to higher-order circuits for processing and through to the generation of postmating behavioral and physiological outputs.
Highlights
► dsx circuitry plays a pivotal role in the female postmating switch ► Peripheral dsx neurons detect and respond to sex peptide ► Central dsx neurons convey this signal to higher-order processing and direct postmating responses.
doi:10.1016/j.cub.2012.04.062
PMCID: PMC3396843  PMID: 22658598
8.  Control of Sexual Differentiation and Behavior by the doublesex gene in Drosophila melanogaster 
Nature neuroscience  2010;13(4):458-466.
Doublesex proteins, part of the structurally and functionally conserved Dmrt gene family, play essential roles in sex determination throughout the animal kingdom. We targeted the insertion of GAL4 into the doublesex (dsx) locus of Drosophila melanogaster, allowing visualization and manipulation of dsx cells in various tissues. In the nervous system, significant differences between the sexes were detected in dsx neuronal numbers, axonal projections, and synaptic density. We show that dsx is required for the development of male-specific neurons that co-express fruitless (fru), a key regulator of male sexual behavior. We propose that both dsx and fru act together to form the neuronal framework necessary for male sexual behavior. Significantly, we show that disrupting dsx neuronal function has profound effects on male sexual behavior. Furthermore, we demonstrate a role for dsx neurons in pre- through to post-copulatory female reproductive behaviors.
doi:10.1038/nn.2515
PMCID: PMC3092424  PMID: 20305646
9.  The Sex-Determination Genes fruitless and doublesex Specify a Neural Substrate Required for Courtship Song 
Current biology : CB  2007;17(17):1473-1478.
Summary
Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1-6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions, the mesothoracic ganglion (Msg), revealed the coexpression of two sex-determination genes, fruitless (fru) and doublesex (dsx). Because both genes are involved in creating a sexually dimorphic CNS [8, 9] and are necessary for song production [10-13], we investigated the individual contributions of fru and dsx to the specification of a male CNS and song production. We show a novel requirement for dsx in specifying a sexually dimorphic population of fru-expressing neurons in the Msg. Moreover, by using females constitutively expressing the male-specific isoforms of fru (FruM), we show a critical requirement for the male isoform of dsx (DsxM), alongside FruM, in the specification of courtship song. Therefore, although FruM expression is sufficient for the performance of many male-specific behaviors [14], we have shown that without DsxM, the determination of a male-specific CNS and thus a full complement of male behaviors are not realized.
doi:10.1016/j.cub.2007.07.047
PMCID: PMC2583281  PMID: 17716899
10.  The Sex-Determination Genes fruitless and doublesex Specify a Neural Substrate Required for Courtship Song 
Current Biology  2007;17(17-3):1473-1478.
Summary
Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1–6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions, the mesothoracic ganglion (Msg), revealed the coexpression of two sex-determination genes, fruitless (fru) and doublesex (dsx). Because both genes are involved in creating a sexually dimorphic CNS [8, 9] and are necessary for song production [10–13], we investigated the individual contributions of fru and dsx to the specification of a male CNS and song production. We show a novel requirement for dsx in specifying a sexually dimorphic population of fru-expressing neurons in the Msg. Moreover, by using females constitutively expressing the male-specific isoforms of fru (FruM), we show a critical requirement for the male isoform of dsx (DsxM), alongside FruM, in the specification of courtship song. Therefore, although FruM expression is sufficient for the performance of many male-specific behaviors [14], we have shown that without DsxM, the determination of a male-specific CNS and thus a full complement of male behaviors are not realized.
doi:10.1016/j.cub.2007.07.047
PMCID: PMC2583281  PMID: 17716899
SYSNEURO

Results 1-10 (10)