Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Suppression of Tumor Growth in Mice by Rationally Designed Pseudopeptide Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase1 
Neoplasia (New York, N.Y.)  2015;17(1):43-54.
Tumor microenvironments (TMEs) are composed of cancer cells, fibroblasts, extracellular matrix, microvessels, and endothelial cells. Two prolyl endopeptidases, fibroblast activation protein (FAP) and prolyl oligopeptidase (POP), are commonly overexpressed by epithelial-derived malignancies, with the specificity of FAP expression by cancer stromal fibroblasts suggesting FAP as a possible therapeutic target. Despite overexpression in most cancers and having a role in angiogenesis, inhibition of POP activity has received little attention as an approach to quench tumor growth. We developed two specific and highly effective pseudopeptide inhibitors, M83, which inhibits FAP and POP proteinase activities, and J94, which inhibits only POP. Both suppressed human colon cancer xenograft growth > 90% in mice. By immunohistochemical stains, M83- and J94-treated tumors had fewer microvessels, and apoptotic areas were apparent in both. In response to M83, but not J94, disordered collagen accumulations were observed. Neither M83- nor J94-treated mice manifested changes in behavior, weight, or gastrointestinal function. Tumor growth suppression was more extensive than noted with recently reported efforts by others to inhibit FAP proteinase function or reduce FAP expression. Diminished angiogenesis and the accompanying profound reduction in tumor growth suggest that inhibition of either FAP or POP may offer new therapeutic approaches that directly target TMEs.
PMCID: PMC4309729  PMID: 25622898
FAP, fibroblast activation protein; POP, prolyl oligopeptidase; TME, tumor microenvironment; DPPIV, dipeptidyl peptidase IV; ECM, extracellular matrix; IHC, immunohistochemistry; CAFs, cancer-associated fibroblasts; MMPs, matrix metalloproteinases
2.  Identification of Class I HLA T Cell Control Epitopes for West Nile Virus 
PLoS ONE  2013;8(6):e66298.
The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity.
PMCID: PMC3677933  PMID: 23762485
3.  Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments1 
Neoplasia (New York, N.Y.)  2013;15(4):348-358.
Fibroblast activation protein (FAP), a membrane prolyl-specific proteinase with both dipeptidase and endopeptidase activities, is overexpressed by reactive stromal fibroblasts during epithelial-derived cancer growth. FAP digests extracellular matrix as tissue is remodeled during cancer expansion and may also promote an immunotolerant tumor microenvironment. Recent studies suggest that nonspecific FAP inhibitors suppress human cancer xenografts in mouse models. Prolyl oligopeptidase (POP), another prolyl-specific serine proteinase, is also elevated in many cancers and may have a regulatory role in angiogenesis promotion. FAP and POP cell-associated activities may be targets for diagnosis and treatment of various cancers, but their accessibilities to highly effective specific inhibitors have not been shown for cells important to cancer growth. Despite their frequent simultaneous expression in many cancers and their overlapping activities toward commonly used substrates, precise, separate measurement of FAP or POP activity has largely been ignored. To distinguish each of the two activities, we synthesized highly specific substrates and inhibitors for FAP or POP based on amino acid sequences surrounding the scissile bonds of their respective putative substrates. We found varying amounts of FAP and POP protein and activities on activated fibroblasts, mesenchymal cells, normal breast cells, and one breast cancer cell line, with some cells exhibiting more POP than FAP activity. Replicating endothelial cells (ECs) expressed POP but not FAP until tubulogenesis began. Targeting FAP-positive cells, especially mesenchymal stem cells and cancer-associated fibroblasts for inactivation or destruction, and inhibiting POP-producing EC may abrogate stromal invasion and angiogenesis simultaneously and thereby diminish cancer growth.
PMCID: PMC3612908  PMID: 23555181
4.  Oxidative Stress and Inflammation in Renal Patients and Healthy Subjects 
PLoS ONE  2011;6(7):e22360.
The first goal of this study was to measure the oxidative stress (OS) and relate it to lipoprotein variables in 35 renal patients before dialysis (CKD), 37 on hemodialysis (HD) and 63 healthy subjects. The method for OS was based on the ratio of cholesteryl esters (CE) containing C18/C16 fatty acids (R2) measured by gas chromatography (GC) which is a simple, direct, rapid and reliable procedure. The second goal was to investigate and identify a triacylglycerol peak on GC, referred to as TG48 (48 represents the sum of the three fatty acids carbon chain lengths) which was markedly increased in renal patients compared to healthy controls. We measured TG48 in patients and controls. Mass spectrometry (MS) and MS twice in tandem were used to analyze the fatty acid composition of TG48. MS showed that TG48 was abundant in saturated fatty acids (SFAs) that were known for their pro-inflammatory property. TG48 was significantly and inversely correlated with OS. Renal patients were characterized by higher OS and inflammation than healthy subjects. Inflammation correlated strongly with TG, VLDL-cholesterol, apolipoprotein (apo) C-III and apoC-III bound to apoB-containing lipoproteins, but not with either total cholesterol or LDL-cholesterol.
In conclusion, we have discovered a new inflammatory factor, TG48. It is characterized with TG rich in saturated fatty acids. Renal patients have increased TG48 than healthy controls.
PMCID: PMC3145638  PMID: 21829457
5.  Proteomic Identification of Binding Partners for the Brain Metabolite Lanthionine Ketimine (LK) and Documentation of LK Effects on Microglia and Motoneuron Cell Cultures 
Lanthionine ketimine (LK) represents a poorly-understood class of thioethers present in mammalian central nervous system. Previous work has indicated high-affinity interaction of LK with synaptosomal membrane protein(s) but neither LK binding partners nor specific bioactivities have been reported. In this study LK was chemically synthesized and used as an affinity agent to capture binding partners from mammalian brain lysate. Liquid chromatography with electrospray ionization-mass spectrometry (LC-ESI-MS/MS) of electrophoretically-separated, LK-bound proteins identified polypeptides implicated in axon remodeling or vesicle trafficking, and diseases including Alzheimer’s disease and schizophrenia: Collapsin response mediator protein-2/dihydropyrimidinase-like protein-2 (CRMP2/DRP2/DPYSL2); myelin basic protein (MBP); and syntaxin-binding protein-1 (STXBP1/Munc-18). Also identified was the recently discovered glutathione (GSH)-binding protein, lanthionine synthetase-like protein-1 (LanCL1). Functional consequences of LK:CRMP2 interactions were probed through immunoprecipitation studies using brain lysate wherein LK was found to increase CRMP2 co-precipitation with its partner neurofibromin-1 (NF1), but decreased CRMP2 co-precipitation with β-tubulin. Functional studies of NSC-34 motor neuron-like cells indicated that a cell-permeable LK-ester, LKE, was non-toxic and protective against oxidative challenge with H2O2. LKE-treated NSC-34 cells significantly increased neurite number and length in a serum concentration-dependent fashion, consistent with a CRMP2 interaction. Finally, LKE antagonized the activation of EOC-20 microglia by inflammogens. The results are discussed with reference to possible biochemical origins, paracrine functions, neurological significance and pharmacological potential of lanthionyl compounds.
PMCID: PMC2836831  PMID: 20181595
lanthionine ketimine; LanCL1; Mannich reaction; glutathione; collapsin mediator response protein; neuroinflammation
6.  Effect of Fibroblast Activation Protein and α2-Antiplasmin Cleaving Enzyme on Collagen Types I, III and IV 
The circulating enzyme, α2-antiplasmin cleaving enzyme (APCE), has very similar sequence homology and proteolytic specificity as fibroblast activation protein (FAP), a membrane-bound proteinase. FAP is expressed on activated fibroblasts associated with rapid tissue growth as in embryogenesis, wound healing, and epithelial-derived malignancies, but not in normal tissues. Its presence on stroma suggests that FAP functions to remodel extracellular matrix (ECM) during neoplastic growth. Precise biologic substrates have not been defined for FAP, although like APCE, it cleaves α2-antiplasmin to a derivative more easily crosslinked to fibrin. While FAP has been shown to cleave gelatin, evidence for cleavage of native collagen, the major ECM component, remains indistinct. We examined the potential proteolytic effects of FAP or APCE alone and in concert with selected matrix metalloproteinases (MMPs) on collagens I, III and IV. SDS-PAGE analyses demonstrated that neither FAP nor APCE cleaves collagen I. Following collagen I cleavage by MMP-1, however, FAP or APCE digested collagen I into smaller peptides. These peptides were analogous to, yet different from, those produced by MMP-9 following MMP-1 cleavage. Amino-terminal sequencing and mass spectrometry analyses of digestion mixtures identified several peptide fragments within the sequences of the two collagen chains. The proteolytic synergy of APCE in the cleavage of collagen I and III was not observed with collagen IV. We conclude that FAP works in synchrony with other proteinases to cleave partially degraded or denatured collagen I and III as ECM is excavated, and that derivative peptides might function to regulate malignant cell growth and motility.
PMCID: PMC1857293  PMID: 17174263
tumor-stromal cell interactions; fibroblast activation protein; α2-antiplasmin cleaving enzyme; collagen; extracellular matrix; cancer

Results 1-6 (6)