Search tips
Search criteria

Results 1-25 (133)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Germline Mutations of Regulator of Telomere Elongation Helicase 1, RTEL1, In Dyskeratosis Congenita 
Human genetics  2013;132(4):473-480.
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families.
Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. Additionally, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.
PMCID: PMC3600110  PMID: 23329068
Dyskeratosis congenita; telomere; bone marrow failure; RTEL1; exome sequencing
2.  Genetic Variation in the Vitamin D Pathway in Relation to Risk of Prostate Cancer – Results from Breast and Prostate Cancer Cohort Consortium (BPC3) 
Studies suggest that vitamin D status may be associated with prostate cancer risk, although the direction and strength of this association differs between experimental and observational studies. Genome-wide association studies have identified genetic variants associated with 25-hydroxyvitamin D (25(OH)D) status. We examined prostate cancer risk in relation to SNPs in four genes shown to predict circulating levels of 25(OH)D.
SNP markers localized to each of four genes (GC, CYP24A1, CYP2R1, and DHCR7) previously associated with 25(OH)D were genotyped in 10,018 cases and 11,052 controls from the NCI Breast and Prostate Cancer Cohort Consortium. Logistic regression was used to estimate the individual and cumulative association between genetic variants and risk of overall and aggressive prostate cancer.
We observed a decreased risk of aggressive prostate cancer among men with the allele in rs6013897 near CYP24A1 associated with lower serum 25(OH)D (per A allele, OR=0.86, 95%CI=0.80–0.93, p-trend=0.0002), but an increased risk for non-aggressive disease (per a allele: OR=1.10, 95%CI=1.04–1.17, p-trend=0.002). Examination of a polygenic score of the four SNPs revealed statistically significantly lower risk of aggressive prostate cancer among men with a greater number of low vitamin D alleles (OR for 6–8 vs. 0–1 alleles = 0.66, 95% CI = 0.44 – 0.98; p-trend=0.003).
In this large, pooled analysis, genetic variants related to lower 25(OH)D were associated with a decreased risk of aggressive prostate cancer.
Our genetic findings do not support a protective association between loci known to influence vitamin D levels and prostate cancer risk.
PMCID: PMC3617077  PMID: 23377224
Vitamin D; prostatic neoplasms; data pooling; genes; SNPs
3.  Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer 
Cancer research  2013;73(7):2211-2220.
Bladder cancer results from the combined effects of environmental and genetic factors, smoking being the strongest risk factor. Evaluating absolute risks resulting from the joint effects of smoking and genetic factors is critical to evaluate the public health relevance of genetic information. Analyses included up to 3,942 cases and 5,680 controls of European background in seven studies. We tested for multiplicative and additive interactions between smoking and 12 susceptibility loci, individually and combined as a polygenic risk score (PRS). Thirty-year absolute risks and risk differences by levels of the PRS were estimated for US-males aged 50-years. Six out of 12 variants showed significant additive gene-environment interactions, most notably NAT2 (P=7×10-4) and UGT1A6 (P=8×10-4). The 30-year absolute risk of bladder cancer in US males was 6.2% for all current smokers. This risk ranged from 2.9% for current smokers in the lowest quartile of the PRS to 9.9% for current smokers in the upper quartile. Risk difference estimates indicated that 8,200 cases would be prevented if elimination of smoking occurred in 100,000 men in the upper PRS quartile, compared to 2,000 cases prevented by a similar effort in the lowest PRS quartile (P-additive =1×10-4). The impact of eliminating smoking the on number of bladder cancer cases prevented is larger for individuals at higher than lower genetic risk. Our findings could have implications for targeted prevention strategies. However, other smoking-related diseases, as well as practical and ethical considerations, need to be considered before any recommendations could be made.
PMCID: PMC3688270  PMID: 23536561
4.  Promoter variants in the MSMB gene associated with prostate cancer regulate MSMB/NCOA4 fusion transcripts 
Human genetics  2012;131(9):1453-1466.
Beta-microseminoprotein (MSP)/MSMB is an immunoglobulin superfamily protein synthesized by prostate epithelial cells and secreted into seminal plasma. Variants in the promoter of the MSMB gene have been associated with the risk of prostate cancer (PCa) in several independent genome-wide association studies. Both MSMB and an adjacent gene, NCOA4, are subjected to transcriptional control via androgen response elements. The gene product of NCOA4 interacts directly with the androgen receptor as a co-activator to enhance AR transcriptional activity. Here, we provide evidence for the expression of full-length MSMB-NCOA4 fusion transcripts regulated by the MSMB promoter. The predominant MSMB-NCOA4 transcript arises by fusion of the 5′UTR and exons 1–2 of the MSMB pre-mRNA, with exons 2–10 of the NCOA4 premRNA, producing a stable fusion protein, comprising the essential domains of NCOA4. Analysis of the splice sites of this transcript shows an unusually strong splice acceptor at NCOA4 exon 2 and the presence of Alu repeats flanking the exons potentially involved in the splicing event. Transfection experiments using deletion clones of the promoter coupled with luciferase reporter assays define a core MSMB promoter element located between –27 and –236 of the gene, and a negative regulatory element immediately upstream of the start codon. Computational network analysis reveals that the MSMB gene is functionally connected to NCOA4 and the androgen receptor signaling pathway. The data provide an example of how GWAS-associated variants may have multiple genetic and epigenetic effects.
PMCID: PMC3956317  PMID: 22661295
5.  A re-sequence analysis of genomic loci on chromosomes 1q32.1, 5p15.33 and 13q22.1 associated with pancreatic cancer risk 
Pancreas  2013;42(2):209-215.
To fine-map common pancreatic cancer susceptibility regions.
We conducted targeted Roche-454 re-sequencing across 428 kb in three genomic regions identified in genome-wide association studies (GWAS) of pancreatic cancer, on chromosomes 1q32.1, 5p15.33 and 13q22.1.
An analytical pipeline for calling genotypes was developed using HapMap samples sequenced on chr5p15.33. Concordance to 1000 Genomes data for chr5p15.33 was >96%. The concordance for chr1q32.1 and chr13q22.1 with pancreatic cancer GWAS data was >99%. Between 9.2–19.0% of variants detected were not present in 1000 Genomes for the respective continental population. The majority of completely novel SNPs were less common (MAF ≤ 5%) or rare (MAF ≤ 2%), illustrating the value of enlarging test sets for discovery of less common variants. Using the dataset, we examined haplotype blocks across each region using a tag SNP analysis (r2 >0.8 for MAF ≥5%) and determined that at least 196, 243 and 63 SNPs are required for fine-mapping chr1q32.1, chr5p15.33, and chr13q22.1, respectively, in European populations.
We have characterized germline variation in three regions associated with pancreatic cancer risk and show that targeted re-sequencing leads to the discovery of novel variants and improves the completeness of germline sequence variants for fine-mapping GWAS susceptibility loci.
PMCID: PMC3618611  PMID: 23295781
pancreatic cancer; targeted re-sequencing; GWAS; susceptibility loci; SNP; 1000G
6.  Genome-wide Association Study Identifies Multiple Risk Loci for Chronic Lymphocytic Leukemia 
Berndt, Sonja I. | Skibola, Christine F. | Joseph, Vijai | Camp, Nicola J. | Nieters, Alexandra | Wang, Zhaoming | Cozen, Wendy | Monnereau, Alain | Wang, Sophia S. | Kelly, Rachel S. | Lan, Qing | Teras, Lauren R. | Chatterjee, Nilanjan | Chung, Charles C. | Yeager, Meredith | Brooks-Wilson, Angela R. | Hartge, Patricia | Purdue, Mark P. | Birmann, Brenda M. | Armstrong, Bruce K. | Cocco, Pierluigi | Zhang, Yawei | Severi, Gianluca | Zeleniuch-Jacquotte, Anne | Lawrence, Charles | Burdette, Laurie | Yuenger, Jeffrey | Hutchinson, Amy | Jacobs, Kevin B. | Call, Timothy G. | Shanafelt, Tait D. | Novak, Anne J. | Kay, Neil E. | Liebow, Mark | Wang, Alice H. | Smedby, Karin E | Adami, Hans-Olov | Melbye, Mads | Glimelius, Bengt | Chang, Ellen T. | Glenn, Martha | Curtin, Karen | Cannon-Albright, Lisa A. | Jones, Brandt | Diver, W. Ryan | Link, Brian K. | Weiner, George J. | Conde, Lucia | Bracci, Paige M. | Riby, Jacques | Holly, Elizabeth A. | Smith, Martyn T. | Jackson, Rebecca D. | Tinker, Lesley F. | Benavente, Yolanda | Becker, Nikolaus | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | McKay, James | Staines, Anthony | Rabe, Kari G. | Achenbach, Sara J. | Vachon, Celine M. | Goldin, Lynn R | Strom, Sara S. | Lanasa, Mark C. | Spector, Logan G. | Leis, Jose F. | Cunningham, Julie M. | Weinberg, J. Brice | Morrison, Vicki A. | Caporaso, Neil E. | Norman, Aaron D. | Linet, Martha S. | De Roos, Anneclaire J. | Morton, Lindsay M. | Severson, Richard K. | Riboli, Elio | Vineis, Paolo | Kaaks, Rudolph | Trichopoulos, Dimitrios | Masala, Giovanna | Weiderpass, Elisabete | Chirlaque, María-Dolores | Vermeulen, Roel C H | Travis, Ruth C. | Giles, Graham G. | Albanes, Demetrius | Virtamo, Jarmo | Weinstein, Stephanie | Clavel, Jacqueline | Zheng, Tongzhang | Holford, Theodore R | Offit, Kenneth | Zelenetz, Andrew | Klein, Robert J. | Spinelli, John J. | Bertrand, Kimberly A. | Laden, Francine | Giovannucci, Edward | Kraft, Peter | Kricker, Anne | Turner, Jenny | Vajdic, Claire M. | Ennas, Maria Grazia | Ferri, Giovanni M. | Miligi, Lucia | Liang, Liming | Sampson, Joshua | Crouch, Simon | Park, Ju-hyun | North, Kari E. | Cox, Angela | Snowden, John A. | Wright, Josh | Carracedo, Angel | Lopez-Otin, Carlos | Bea, Silvia | Salaverria, Itziar | Martin, David | Campo, Elias | Fraumeni, Joseph F. | de Sanjose, Silvia | Hjalgrim, Henrik | Cerhan, James R. | Chanock, Stephen J. | Rothman, Nathaniel | Slager, Susan L.
Nature genetics  2013;45(8):868-876.
PMCID: PMC3729927  PMID: 23770605
7.  Genetic variant in TP63 on locus 3q28 is associated with risk of lung adenocarcinoma among never-smoking females in Asia 
Hosgood, H. Dean | Wang, Wen-Chang | Hong, Yun-Chul | Wang, Jiu-Cun | Chen, Kexin | Chang, I-Shou | Chen, Chien-Jen | Lu, Daru | Yin, Zhihua | Wu, Chen | Zheng, Wei | Qian, Biyun | Park, Jae Yong | Kim, Yeul Hong | Chatterjee, Nilanjan | Chen, Ying | Chang, Gee-Chen | Hsiao, Chin-Fu | Yeager, Meredith | Tsai, Ying-Huang | Wei, Hu | Kim, Young Tae | Wu, Wei | Zhao, Zhenhong | Chow, Wong-Ho | Zhu, Xiaoling | Lo, Yen-Li | Sung, Sook Whan | Chen, Kuan-Yu | Yuenger, Jeff | Kim, Joo Hyun | Huang, Liming | Chen, Ying-Hsiang | Gao, Yu-Tang | Kim, Jin Hee | Huang, Ming-Shyan | Jung, Tae Hoon | Caporaso, Neil | Zhao, Xueying | Huan, Zhang | Yu, Dianke | Kim, Chang Ho | Su, Wu-Chou | Shu, Xiao-Ou | Kim, In-San | Bassig, Bryan | Chen, Yuh-Min | Cha, Sung Ick | Tan, Wen | Chen, Hongyan | Yang, Tsung-Ying | Sung, Jae Sook | Wang, Chih-Liang | Li, Xuelian | Park, Kyong Hwa | Yu, Chong-Jen | Ryu, Jeong-Seon | Xiang, Yongbing | Hutchinson, Amy | Kim, Jun Suk | Cai, Qiuyin | Landi, Maria Teresa | Lee, Kyoung-Mu | Hung, Jen-Yu | Park, Ju-Yeon | Tucker, Margaret | Lin, Chien-Chung | Ren, Yangwu | Perng, Reury-Perng | Chen, Chih-Yi | Jin, Li | Chen, Kun-Chieh | Li, Yao-Jen | Chiu, Yu-Fang | Tsai, Fang-Yu | Yang, Pan-Chyr | Fraumeni, Joseph F. | Seow, Adeline | Lin, Dongxin | Zhou, Baosen | Chanock, Stephen | Hsiung, Chao Agnes | Rothman, Nathaniel | Lan, Qing
Human genetics  2012;131(7):10.1007/s00439-012-1144-8.
A recent genome-wide association study (GWAS) of subjects from Japan and South Korea reported a novel association between the TP63 locus on chromosome 3q28 and risk of lung adenocarcinoma (p = 7.3 × 10−12); however, this association did not achieve genome-wide significance (p < 10−7) among never-smoking males or females. To determine if this association with lung cancer risk is independent of tobacco use, we genotyped the TP63 SNPs reported by the previous GWAS (rs10937405 and rs4488809) in 3,467 never-smoking female lung cancer cases and 3,787 never-smoking female controls from 10 studies conducted in Taiwan, Mainland China, South Korea, and Singapore. Genetic variation in rs10937405 was associated with risk of lung adenocarcinoma [n = 2,529 cases; p = 7.1 × 10−8; allelic risk = 0.80, 95% confidence interval (CI) = 0.74–0.87]. There was also evidence of association with squamous cell carcinoma of the lung (n = 302 cases; p = 0.037; allelic risk = 0.82, 95% CI = 0.67–0.99). Our findings provide strong evidence that genetic variation in TP63 is associated with the risk of lung adenocarcinoma among Asian females in the absence of tobacco smoking.
PMCID: PMC3875137  PMID: 22367405
8.  Meta-analysis identifies four new loci associated with testicular germ cell tumor 
Nature genetics  2013;45(6):10.1038/ng.2634.
We conducted a meta-analysis to identify new loci for testicular germ cell tumor (TGCT) susceptibility. In the discovery phase, 931 affected individuals and 1,975 controls from three genome wide association studies (GWAS) were analyzed. Replication was conducted in six independent sample sets totaling 3,211 affected individuals and 7,591 controls. In the combined analysis, TGCT risk was significantly associated with markers at four novel loci: 4q22.2 in HPGDS (per allele odds ratio (OR) 1.19, 95%CI 1.12–1.26, P = 1.11×10−8); 7p22.3 in MAD1L1 (OR 1.21, 95%CI 1.14–1.29, P = 5.59×10−9); 16q22.3 in RFWD3 (OR 1.26, 95%CI 1.18–1.34, P = 5.15×10−12); and 17q22 (rs9905704; OR 1.27, 95%CI 1.18–1.33; P = 4.32×10−13, and rs7221274; OR 1.20, 95%CI 1.12–1.28 P = 4.04×10−9), a locus which includes TEX14, RAD51C and PPM1E. The new TGCT susceptibility loci contain biologically plausible genes encoding proteins important for male germ cell development, chromosomal segregation and DNA damage response.
PMCID: PMC3723930  PMID: 23666239
9.  Genome-wide association studies of gastric adenocarcinoma and esophageal squamous cell carcinoma identify a shared susceptibility locus in PLCE1 at 10q23 
Nature genetics  2012;44(10):1090-1097.
We conducted a genome-wide association study of gastric cancer (GC) and esophageal squamous cell carcinoma (ESCC) in ethnic Chinese subjects in which we genotyped 551,152 single nucleotide polymorphisms (SNPs). We report a combined analysis of 2,240 GC cases, 2,115 ESCC cases, and 3,302 controls drawn from five studies. In logistic regression models adjusted for age, sex, and study, multiple variants at 10q23 had genome-wide significance for GC and ESCC independently. A notable signal was rs2274223, a nonsynonymous SNP located in PLCE1, for GC (P=8.40×1010; per allele odds ratio (OR) = 1.31) and ESCC (P=3.85×10−9; OR = 1.34). The association with GC differed by anatomic subsite. For tumors located in the cardia the association was stronger (P=4.19 × 10−15; OR= 1.57) and for those located in the noncardia stomach it was absent (P=0.44; OR=1.05). Our findings at 10q23 could provide insight into the high incidence rates of both cancers in China.
PMCID: PMC3513832  PMID: 22960999
10.  Genome-wide Association Study of Glioma and Meta-Analysis 
Human genetics  2012;131(12):1877-1888.
Gliomas account for approximately 80% of all primary malignant brain tumors, and despite improvements in clinical care over the last 20 years remain among the most lethal tumors, underscoring the need for gaining new insights that could translate into clinical advances. Recent genome-wide association studies (GWAS) have identified seven new susceptibility regions. We conducted a new independent GWAS of glioma using 1,856 cases and 4,955 controls (from 14 cohort studies, 3 casecontrol studies, and 1 population-based case only study) and found evidence of strong replication for three of the seven previously reported associations at 20q13.33 (RTEL), 5p15.33 (TERT), and 9p21.3 (CDKN2BAS), and consistent association signals for the remaining four at 7p11.2 (EGFR both loci), 8q24.21 (CCDC26) and 11q23.3 (PHLDB1). The direction and magnitude of the signal were consistent for samples from cohort and case-control studies, but the strength of the association was more pronounced for loci rs6010620 (20q,13.33; RTEL) and rs2736100 (5p15.33, TERT) in cohort studies despite the smaller number of cases in this group, likely due to relatively more higher grade tumors being captured in the cohort studies. We further examined the 85 most promising single nucleotide polymorphism (SNP) markers identified in our study in three replication sets (5,015 cases and 11,601 controls), but no new markers reached genome-wide significance. Our findings suggest that larger studies focusing on novel approaches as well as specific tumor subtypes or subgroups will be required to identify additional common susceptibility loci for glioma risk.
PMCID: PMC3761216  PMID: 22886559
11.  A Recessive Founder Mutation in Regulator of Telomere Elongation Helicase 1, RTEL1, Underlies Severe Immunodeficiency and Features of Hoyeraal Hreidarsson Syndrome 
PLoS Genetics  2013;9(8):e1003695.
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.
Author Summary
Patients with dyskeratosis congenita (DC), a rare inherited disease, are at very high risk of developing cancer and bone marrow failure. The clinical features of DC include nail abnormalities, skin discoloration, and white spots in the mouth. Patients with Hoyeraal-Hreidarsson syndrome (HH) have symptoms of DC plus cerebellar hypoplasia, immunodeficiency, and poor prenatal growth. DC and HH are caused by defects in telomere biology; improperly maintained telomeres are thought to be a major contributor to carcinogenesis. In half the cases of DC, the causative mutation is unknown. By studying families affected by DC for whom a causative mutation has not yet been identified, we have discovered a homozygous germline mutation in RTEL1, a telomere maintenance gene that, if mutated, can result in HH. The mutations result in the inability of the RTEL1 protein to function properly at the telomere, and underscore its important role in telomere biology.
PMCID: PMC3757051  PMID: 24009516
12.  Telomere Length and the Risk of Cutaneous Malignant Melanoma in Melanoma-Prone Families with and without CDKN2A Mutations 
PLoS ONE  2013;8(8):e71121.
Recent evidence suggests a link between constitutional telomere length (TL) and cancer risk. Previous studies have suggested that longer telomeres were associated with an increased risk of melanoma and larger size and number of nevi. The goal of this study was to examine whether TL modified the risk of melanoma in melanoma-prone families with and without CDKN2A germline mutations.
Materials and Methods
We measured TL in blood DNA in 119 cutaneous malignant melanoma (CMM) cases and 208 unaffected individuals. We also genotyped 13 tagging SNPs in TERT.
We found that longer telomeres were associated with an increased risk of CMM (adjusted OR = 2.81, 95% CI = 1.02–7.72, P = 0.04). The association of longer TL with CMM risk was seen in CDKN2A- cases but not in CDKN2A+ cases. Among CMM cases, the presence of solar injury was associated with shorter telomeres (P = 0.002). One SNP in TERT, rs2735940, was significantly associated with TL (P = 0.002) after Bonferroni correction.
Our findings suggest that TL regulation could be variable by CDKN2A mutation status, sun exposure, and pigmentation phenotype. Therefore, TL measurement alone may not be a good marker for predicting CMM risk.
PMCID: PMC3747185  PMID: 23990928
13.  Association between adult height, genetic susceptibility and risk of glioma 
Background Some, but not all, observational studies have suggested that taller stature is associated with a significant increased risk of glioma. In a pooled analysis of observational studies, we investigated the strength and consistency of this association, overall and for major sub-types, and investigated effect modification by genetic susceptibility to the disease.
Methods We standardized and combined individual-level data on 1354 cases and 4734 control subjects from 13 prospective and 2 case–control studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for glioma and glioma sub-types were estimated using logistic regression models stratified by sex and adjusted for birth cohort and study. Pooled ORs were additionally estimated after stratifying the models according to seven recently identified glioma-related genetic variants.
Results Among men, we found a positive association between height and glioma risk (≥190 vs 170–174 cm, pooled OR = 1.70, 95% CI: 1.11–2.61; P-trend = 0.01), which was slightly stronger after restricting to cases with glioblastoma (pooled OR = 1.99, 95% CI: 1.17–3.38; P-trend = 0.02). Among women, these associations were less clear (≥175 vs 160–164 cm, pooled OR for glioma = 1.06, 95% CI: 0.70–1.62; P-trend = 0.22; pooled OR for glioblastoma = 1.36, 95% CI: 0.77–2.39; P-trend = 0.04). In general, we did not observe evidence of effect modification by glioma-related genotypes on the association between height and glioma risk.
Conclusion An association of taller adult stature with glioma, particularly for men and stronger for glioblastoma, should be investigated further to clarify the role of environmental and genetic determinants of height in the etiology of this disease.
PMCID: PMC3429876  PMID: 22933650
Height; brain cancer; glioma; cancer; epidemiology
14.  Alcohol, Genetics and Risk of Breast Cancer in the Prostate, Lung, Colorectal and Ovarian Cancer (PLCO) Screening Trial 
We tested the hypothesis that genes involved in the alcohol oxidation pathway modify the association between alcohol intake and breast cancer.
Subjects were women aged 55–74 at baseline from the screening arm of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Incident breast cancers were identified through annual health surveys. Controls were frequency matched to cases by age and year of entry into the trial. A self-administered food frequency questionnaire queried frequency and usual serving size of beer, wine or wine coolers and liquor. Three SNPs in genes in the alcohol metabolism pathway were genotyped: alcohol dehydrogenase 2, alcohol dehydrogenase 3 and CYP2E1.
The study included 1041 incident breast cancer cases and 1070 controls. In comparison to non-drinkers, the intake of any alcohol significantly increased the risk of breast cancer, and this risk increased with each category of daily alcohol intake, (OR=2.01, 95% CL=1.14, 3.53) for women who drank three or more standard drinks per day. Stratification by genotype revealed significant gene/environment interactions. For the ADH1B gene, there were statistically significant associations between all levels of alcohol intake and risk of breast cancer (all OR>1.34 and all lower CL >1.01), while for women with the GA or AA genotype, there were no significant associations between alcohol intake and risk of breast cancer.
Alcohol intake, genes involved in alcohol metabolism and their interaction increase the risk of breast cancer in post-menopausal women.
This information could be useful for primary care providers to personalize information about breast cancer risk reduction.
PMCID: PMC3584637  PMID: 22331481
breast cancer; alcohol; metabolizing enzyme; genetics; risk factors
15.  Genetic variants in DNA repair genes and the risk of cutaneous malignant melanoma in melanoma-prone families with/without CDKN2A mutations 
Cutaneous malignant melanoma (CMM) is an etiologically heterogeneous disease with genetic, environmental (sun exposure) and host (pigmentation/nevi) factors, and their interactions contributing to risk. Genetic variants in DNA repair genes may be particularly important since their altered function in response to sun exposure-related DNA damage maybe related to risk for CMM. However, systematic evaluations of genetic variants in DNA repair genes are limited, particularly in high-risk families.
We comprehensively analyzed DNA repair gene polymorphisms and CMM risk in melanoma-prone families with/without CDKN2A mutations. A total of 586 individuals (183 CMM) from 53 families (23 CDKN2A (+), 30 CDKN2A (−)) were genotyped for 2964 tagSNPs in 131 DNA repair genes. Conditional logistic regression, conditioning on families, was used to estimate trend p-values, odds ratios and 95% confidence intervals for the association between CMM and each SNP separately, adjusted for age and sex. P-values for SNPs in the same gene were combined to yield gene specific p-values. Two genes, POLN and PRKDC, were significantly associated with melanoma after Bonferroni correction for multiple testing (p=0.0003 and 0.00035, respectively). DCLRE1B showed suggestive association (p=0.0006). 28~56% of genotyped SNPs in these genes had single SNP p<0.05. The most significant SNPs in POLN and PRKDC had similar effects in CDKN2A (+) and CDKN2A (−) families. Our finding suggests that polymorphisms in DNA repair genes, POLN and PRKDC, were associated with increased melanoma risk in melanoma families with and without CDKN2A mutations.
PMCID: PMC3274649  PMID: 21671477
16.  Genotypic variants at 2q33 and risk of esophageal squamous cell carcinoma in China: a meta-analysis of genome-wide association studies 
Abnet, Christian C. | Wang, Zhaoming | Song, Xin | Hu, Nan | Zhou, Fu-You | Freedman, Neal D. | Li, Xue-Min | Yu, Kai | Shu, Xiao-Ou | Yuan, Jian-Min | Zheng, Wei | Dawsey, Sanford M. | Liao, Linda M. | Lee, Maxwell P. | Ding, Ti | Qiao, You-Lin | Gao, Yu-Tang | Koh, Woon-Puay | Xiang, Yong-Bing | Tang, Ze-Zhong | Fan, Jin-Hu | Chung, Charles C. | Wang, Chaoyu | Wheeler, William | Yeager, Meredith | Yuenger, Jeff | Hutchinson, Amy | Jacobs, Kevin B. | Giffen, Carol A. | Burdett, Laurie | Fraumeni, Joseph F. | Tucker, Margaret A. | Chow, Wong-Ho | Zhao, Xue-Ke | Li, Jiang-Man | Li, Ai-Li | Sun, Liang-Dan | Wei, Wu | Li, Ji-Lin | Zhang, Peng | Li, Hong-Lei | Cui, Wen-Yan | Wang, Wei-Peng | Liu, Zhi-Cai | Yang, Xia | Fu, Wen-Jing | Cui, Ji-Li | Lin, Hong-Li | Zhu, Wen-Liang | Liu, Min | Chen, Xi | Chen, Jie | Guo, Li | Han, Jing-Jing | Zhou, Sheng-Li | Huang, Jia | Wu, Yue | Yuan, Chao | Huang, Jing | Ji, Ai-Fang | Kul, Jian-Wei | Fan, Zhong-Min | Wang, Jian-Po | Zhang, Dong-Yun | Zhang, Lian-Qun | Zhang, Wei | Chen, Yuan-Fang | Ren, Jing-Li | Li, Xiu-Min | Dong, Jin-Cheng | Xing, Guo-Lan | Guo, Zhi-Gang | Yang, Jian-Xue | Mao, Yi-Ming | Yuan, Yuan | Guo, Er-Tao | Zhang, Wei | Hou, Zhi-Chao | Liu, Jing | Li, Yan | Tang, Sa | Chang, Jia | Peng, Xiu-Qin | Han, Min | Yin, Wan-Li | Liu, Ya-Li | Hu, Yan-Long | Liu, Yu | Yang, Liu-Qin | Zhu, Fu-Guo | Yang, Xiu-Feng | Feng, Xiao-Shan | Wang, Zhou | Li, Yin | Gao, She-Gan | Liu, Hai-Lin | Yuan, Ling | Jin, Yan | Zhang, Yan-Rui | Sheyhidin, Ilyar | Li, Feng | Chen, Bao-Ping | Ren, Shu-Wei | Liu, Bin | Li, Dan | Zhang, Gao-Fu | Yue, Wen-Bin | Feng, Chang-Wei | Qige, Qirenwang | Zhao, Jian-Ting | Yang, Wen-Jun | Lei, Guang-Yan | Chen, Long-Qi | Li, En-Min | Xu, Li-Yan | Wu, Zhi-Yong | Bao, Zhi-Qin | Chen, Ji-Li | Li, Xian-Chang | Zhuang, Xiang | Zhou, Ying-Fa | Zuo, Xian-Bo | Dong, Zi-Ming | Wang, Lu-Wen | Fan, Xue-Pin | Wang, Jin | Zhou, Qi | Ma, Guo-Shun | Zhang, Qin-Xian | Liu, Hai | Jian, Xin-Ying | Lian, Sin-Yong | Wang, Jin-Sheng | Chang, Fu-Bao | Lu, Chang-Dong | Miao, Jian-Jun | Chen, Zhi-Guo | Wang, Ran | Guo, Ming | Fan, Zeng-Lin | Tao, Ping | Liu, Tai-Jing | Wei, Jin-Chang | Kong, Qing-Peng | Fan, Lei | Wang, Xian-Zeng | Gao, Fu-Sheng | Wang, Tian-Yun | Xie, Dong | Wang, Li | Chen, Shu-Qing | Yang, Wan-Cai | Hong, Jun-Yan | Wang, Liang | Qiu, Song-Liang | Goldstein, Alisa M. | Yuan, Zhi-Qing | Chanock, Stephen J. | Zhang, Xue-Jun | Taylor, Philip R. | Wang, Li-Dong
Human Molecular Genetics  2012;21(9):2132-2141.
Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P< 5 × 10−8, and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19–1.40) and P= 7.63 × 10−10. An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral recombination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33 that map to the CASP8/ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the widely studied rs3834129 and rs1045485 SNPs in CASP8. Future studies of esophageal and other cancers should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and rs10201587 and other strongly correlated variants.
PMCID: PMC3315211  PMID: 22323360
17.  Genetic Susceptibility Loci, Pesticide Exposure and Prostate Cancer Risk 
PLoS ONE  2013;8(4):e58195.
Uncovering SNP (single nucleotide polymorphisms)-environment interactions can generate new hypotheses about the function of poorly characterized genetic variants and environmental factors, like pesticides. We evaluated SNP-environment interactions between 30 confirmed prostate cancer susceptibility loci and 45 pesticides and prostate cancer risk in 776 cases and 1,444 controls in the Agricultural Health Study. We used unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. After correction for multiple tests using the False Discovery Rate method, two interactions remained noteworthy. Among men carrying two T alleles at rs2710647 in EH domain binding protein 1 (EHBP1) SNP, the risk of prostate cancer in those with high malathion use was 3.43 times those with no use (95% CI: 1.44–8.15) (P-interaction  = 0.003). Among men carrying two A alleles at rs7679673 in TET2, the risk of prostate cancer associated with high aldrin use was 3.67 times those with no use (95% CI: 1.43, 9.41) (P-interaction  = 0.006). In contrast, associations were null for other genotypes. Although additional studies are needed and the exact mechanisms are unknown, this study suggests known genetic susceptibility loci may modify the risk between pesticide use and prostate cancer.
PMCID: PMC3617165  PMID: 23593118
18.  Comprehensive resequence analysis of a 123kb region of chromosome 11q13 associated with prostate cancer 
The Prostate  2012;72(5):476-486.
Genome-wide association studies (GWAS) of prostate cancer have identified single nucleotide polymorphism (SNP) markers in a region of chromosome 11q13.3 in men of European decent. A fine-mapping analysis with tag SNPs in the Cancer Genetic Markers of Susceptibility (CGEMS) study identified three independent loci, marked by rs10896438, rs12793759, and rs10896449. This study further annotates common and uncommon variation across this region.
A next generation resequence analysis of a 122.9kb region of 11q13.3 (68,642,755-68,765,690) was conducted in 78 unrelated individuals of European background, 1 CEPH trio, and 1 YRI trio.
In total, 644 polymorphic loci were identified by our sequence analysis. Of these, 166 variants – 118 SNPs and 48 insertion-deletion polymorphisms (indels) – were novel, namely not present in the 1000 Genomes or International HapMap Projects. We identified 22, 25, 6, and 4 variants strongly correlated (r2 ≥ 0.8) with rs10896438, rs10896449, rs12793759, and rs11228565, respectively. HapMap SNPs were in linkage disequilibrium (r2 ≥ 0.8) with 48%, 69%, 14%, and 60% of SNPs marking bins by rs10896438, rs10896449, rs12793759, and rs11228565, respectively.
Our next generation resequence analysis compliments publicly available datasets of European descent (HapMap, build 28 and 1000 Genome, Pilot 1, Oct 2010), underscoring the value of targeted resequence analysis prior to initiating functional studies based on public databases alone. Increasing the number of common variants enables investigators to better prioritize variants for functional studies designed to uncover the biological basis of the direct association(s) in the region.
PMCID: PMC3325513  PMID: 22468268
Resequence; 11q13; prostate cancer; SNP
19.  Invited Commentary: More Surprises From a Gene Desert 
American Journal of Epidemiology  2012;175(6):488-491.
Pleiotropy across the 8q24 region is perhaps the most intriguing of the genome-wide association findings relating to cancer. This region of chromosome 8 is a gene desert, far from any recognized genes. Guarrera et al., whose work is reported in this issue (Am J Epidemiol. 2012;175(6):479–487), took an epidemiologic approach to learn more about the 8q24 region. They capitalized on their ascertainment of other endpoints in members of the cohort at the Turin site of the European Prospective Investigation Into Cancer and Nutrition to investigate multiple outcomes for additional pleiotropic effects in the 8q24 region. Alternative design options might involve genotyping of more variants, incorporation of more cases, or use of a single control group close to the size of the most common case group. Their analytic methods reflect the uncertainty of the underlying biology. The findings sharpen the scientific question about how variation in the 8q24 region affects pathogenesis. The genome-wide association effort is possible because of the economy of scale afforded by extremely dense genotyping. Strict adherence to the hypothesis-driven approach would ignore information that is obtainable at a trivial cost. The genome-wide association strategy tests whether agnostic data-mining methods can advance knowledge alongside or even in place of the standard hypothesis-driven approach, which is the conventional scientific method children learn in kindergarten and onward, even through graduate school and beyond.
PMCID: PMC3299420  PMID: 22350582
neoplasms; chromosomes, human, pair 8; diabetes mellitus; DNA, intergenic; genetic pleiotropy; mortality
20.  Common Single Nucleotide Polymorphisms in Genes Related to Immune Function and Risk of Papillary Thyroid Cancer 
PLoS ONE  2013;8(3):e57243.
Accumulating evidence suggests that alterations in immune function may be important in the etiology of papillary thyroid cancer (PTC). To identify genetic markers in immune-related pathways, we evaluated 3,985 tag single nucleotide polymorphisms (SNPs) in 230 candidate gene regions (adhesion-extravasation-migration, arachidonic acid metabolism/eicosanoid signaling, complement and coagulation cascade, cytokine signaling, innate pathogen detection and antimicrobials, leukocyte signaling, TNF/NF-kB pathway or other) in a case-control study of 344 PTC cases and 452 controls. We used logistic regression models to estimate odds ratios (OR) and calculate one degree of freedom P values of linear trend (PSNP-trend) for the association between genotype (common homozygous, heterozygous, variant homozygous) and risk of PTC. To correct for multiple comparisons, we applied the false discovery rate method (FDR). Gene region- and pathway-level associations (PRegion and PPathway) were assessed by combining individual PSNP-trend values using the adaptive rank truncated product method. Two SNPs (rs6115, rs6112) in the SERPINA5 gene were significantly associated with risk of PTC (PSNP-FDR/PSNP-trend = 0.02/6×10−6 and PSNP-FDR/PSNP-trend = 0.04/2×10−5, respectively). These associations were independent of a history of autoimmune thyroiditis (OR = 6.4; 95% confidence interval: 3.0–13.4). At the gene region level, SERPINA5 was suggestively associated with risk of PTC (PRegion-FDR/PRegion = 0.07/0.0003). Overall, the complement and coagulation cascade pathway was the most significant pathway (PPathway = 0.02) associated with PTC risk largely due to the strong effect of SERPINA5. Our results require replication but suggest that the SERPINA5 gene, which codes for the protein C inhibitor involved in many biological processes including inflammation, may be a new susceptibility locus for PTC.
PMCID: PMC3592848  PMID: 23520464
21.  Polymorphisms in Complement System Genes and Risk of Non-Hodgkin Lymphoma 
The complement system plays an important role in inflammatory and immune responses, and recent evidence has suggested that it may also play a role in lymphomagenesis. We evaluated the association between genetic variation in complement system genes and risk of non-Hodgkin lymphoma (NHL) in a population-based case–control study conducted among women in Connecticut. Tag SNPs in 30 complement genes were genotyped in 432 Caucasian incident cases and 494 frequency-matched controls. A gene-based analysis that adjusted for the number of tag SNPs genotyped in each gene showed a significant association with NHL overall (P = 0.04) as well as with diffuse large B-cell lymphoma (DLBCL) (P = 0.01) for the C1RL gene. A SNP-based analysis showed that a C>T base substitution for C1RL rs3813729 (odds ratio (OR)CT = 0.60, 95% confidence interval (CI) = 0.42–0.87, Ptrend = 0.0062) was associated with a decreased risk of overall NHL, as well as for DLBCL (ORCT = 0.39, 95% CI = 0.20–0.73; Ptrend = 0.0034). Additionally, SNPs (C2 rs497309, A>C and C3 rs344550, G>C) in two complement genes were positively associated with marginal zone lymphoma (MZL) and C1QG was associated with CLL/SLL, but these results were based on a limited number of cases. Our results suggest a potential role of the complement system in susceptibility to NHL; however, our results should be viewed as exploratory and further replication is needed to clarify these preliminary findings.
PMCID: PMC3391498  PMID: 22170086
lymphoma; C1RL; innate immunity; SNP
22.  The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma 
Human Molecular Genetics  2011;21(5):1190-1200.
In follow-up of a recent genome-wide association study (GWAS) that identified a locus in chromosome 2p21 associated with risk for renal cell carcinoma (RCC), we conducted a fine mapping analysis of a 120 kb region that includes EPAS1. We genotyped 59 tagged common single-nucleotide polymorphisms (SNPs) in 2278 RCC and 3719 controls of European background and observed a novel signal for rs9679290 [P = 5.75 × 10−8, per-allele odds ratio (OR) = 1.27, 95% confidence interval (CI): 1.17–1.39]. Imputation of common SNPs surrounding rs9679290 using HapMap 3 and 1000 Genomes data yielded two additional signals, rs4953346 (P = 4.09 × 10−14) and rs12617313 (P = 7.48 × 10−12), both highly correlated with rs9679290 (r2 > 0.95), but interestingly not correlated with the two SNPs reported in the GWAS: rs11894252 and rs7579899 (r2 < 0.1 with rs9679290). Genotype analysis of rs12617313 confirmed an association with RCC risk (P = 1.72 × 10−9, per-allele OR = 1.28, 95% CI: 1.18–1.39) In conclusion, we report that chromosome 2p21 harbors a complex genetic architecture for common RCC risk variants.
PMCID: PMC3277315  PMID: 22113997
23.  Common genetic variants in prostate cancer risk prediction – Results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3) 
One of the goals of personalized medicine is to generate individual risk profiles that could identify individuals in the population that exhibit high risk. The discovery of more than two-dozen independent SNP markers in prostate cancer has raised the possibility for such risk stratification. In this study, we evaluated the discriminative and predictive ability for prostate cancer risk models incorporating 25 common prostate cancer genetic markers, family history of prostate cancer and age.
We fit a series of risk models and estimated their performance in 7,509 prostate cancer cases and 7,652 controls within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We also calculated absolute risks based on SEER incidence data.
The best risk model (C-statistic=0.642) included individual genetic markers and family history of prostate cancer. We observed a decreasing trend in discriminative ability with advancing age (P=0.009), with highest accuracy in men younger than 60 years (C-statistic=0.679). The absolute ten-year risk for 50-year old men with a family history ranged from 1.6% (10th percentile of genetic risk) to 6.7% (90th percentile of genetic risk). For men without family history, the risk ranged from 0.8% (10th percentile) to 3.4% (90th percentile).
Our results indicate that incorporating genetic information and family history in prostate cancer risk models can be particularly useful for identifying younger men that might benefit from PSA screening.
Although adding genetic risk markers improves model performance, the clinical utility of these genetic risk models is limited.
PMCID: PMC3318963  PMID: 22237985
Prostate cancer; polymorphism; risk prediction model
24.  Genetic variation in nucleotide excision repair pathway genes, pesticide exposure and prostate cancer risk 
Carcinogenesis  2011;33(2):331-337.
Previous research demonstrates increased prostate cancer risk for pesticide applicators and pesticide manufacturing workers. Although underlying mechanisms are unknown, human biomonitoring studies indicate increased genetic damage (e.g. chromosomal aberrations) with pesticide exposure. Given that the nucleotide excision repair (NER) pathway repairs a broad range of DNA damage, we evaluated interactions between pesticide exposure and 324 single-nucleotide polymorphisms (SNPs) tagging 27 NER genes among 776 prostate cancer cases and 1444 male controls in a nested case–control study of white Agricultural Health Study pesticide applicators. We determined interaction P values using likelihood ratio tests from logistic regression models and three-level pesticide variables (none/low/high) based on lifetime days of use weighted to an intensity score. We adjusted for multiple comparisons using the false discovery rate (FDR) method. Of the 17 interactions that met FDR <0.2, 3 displayed a monotonic increase in prostate cancer risk with increasing exposure in one genotype group and no significant association in the other group. Men carrying the variant A allele at ERCC1 rs2298881 exhibited increased prostate cancer risk with high versus no fonofos use [odds ratio (OR) 2.98; 95% confidence interval (CI) 1.65–5.39; Pinteract = 3.6 × 10−4; FDR-adjusted P = 0.11]. Men carrying the homozygous wild-type TT genotype at two correlated CDK7 SNPs, rs11744596 and rs2932778 (r2 = 1.0), exhibited increased risk with high versus no carbofuran use (OR 2.01; 95% CI 1.31–3.10 for rs11744596; Pinteract = 7.2 × 10−4; FDR-adjusted P = 0.09). In contrast, we did not observe associations among men with other genotypes at these loci. While requiring replication, our findings suggest a role for NER genetic variation in pesticide-associated prostate cancer risk.
PMCID: PMC3271261  PMID: 22102698
25.  Replication of five prostate cancer loci identified in an Asian population – Results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3) 
A recent Genome-Wide Association Study (GWAS) of prostate cancer in a Japanese population identified five novel regions not previously discovered in other ethnicities. In this study, we attempt to replicate these five loci in a series of nested prostate cancer case-control studies of European ancestry.
We genotyped five SNPs: rs13385191 (chromosome 2p24), rs12653946 (5p15), rs1983891 (6p21), rs339331 (6p22) and rs9600079 (13q22), in 7,956 prostate cancer cases and 8,148 controls from a series of nested case-control studies within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We tested each SNP for association with prostate cancer risk and assessed if associations differed with respect to disease severity and age of onset.
Four SNPs (rs13385191, rs12653946, rs1983891 and rs339331) were significantly associated with prostate cancer risk (p-values ranging from 0.01 to 1.1×10-5). Allele frequencies and odds ratios were overall lower in our population of European descent compared to the discovery Asian population. SNP rs13385191 (C2orf43) was only associated with low-stage disease (p=0.009, case-only test). No other SNP showed association with disease severity or age of onset. We did not replicate the 13q22 SNP, rs9600079 (p=0.62).
Four SNPs associated with prostate cancer risk in an Asian population are also associated with prostate cancer risk in men of European descent.
This study illustrates the importance of evaluation of prostate cancer risk markers across ethnic groups.
PMCID: PMC3253912  PMID: 22056501

Results 1-25 (133)