PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Physician Awareness and Utilization of Food and Drug Administration (FDA)-Approved Labeling for Pharmacogenomic Testing Information 
Journal of Personalized Medicine  2013;3(2):111-123.
We surveyed 10,303 United States physicians on where they obtain pharmacogenomic testing information. Thirty-nine percent indicated that they obtained this from drug labeling. Factors positively associated with this response included older age, postgraduate instruction, using other information sources, regulatory approval/ recommendation of testing, reliance on labeling for information, and perception that patients have benefited from testing. Physicians use pharmacogenomic testing information from drug labeling, highlighting the importance of labeling information that is conducive to practice application.
doi:10.3390/jpm3020111
PMCID: PMC4251399  PMID: 25562522
pharmacogenomics; physician; drug labeling; survey
2.  Association of Blood Lipids with Common DNA Sequence Variants at Nineteen Genetic Loci in the Multiethnic United States National Health and Nutrition Examination Survey III 
Background
Using the genome-wide association approach in individuals of European ancestry, we and others recently identified single nucleotide polymorphisms (SNPs) at 19 loci as associated with blood lipids; eight of these loci were novel. Whether these same SNPs associate with lipids in a broader range of ethnicities is unknown.
Methods and Results
We genotyped index SNPs at 19 loci in the Third United States National Health and Nutrition Examination Survey (n=7159), a population-based probability sample of the U.S. comprised primarily of non-Hispanic blacks, Mexican Americans, and non-Hispanic whites. We constructed ethnic-specific residual blood lipid levels after adjusting for age and gender. Ethnic-specific linear regression was used to test the association of genotype with blood lipids. To summarize the statistical evidence across three racial groups, we conducted a fixed-effects variance-weighted meta-analysis.
After exclusions, there were 1627 non-Hispanic blacks, 1659 Mexican Americans, and 2230 non-Hispanic whites. At five loci (1p13 near CELSR2/PSRC1/SORT1, HMGCR, CETP, LPL, and APOA5), the index SNP was associated with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides in all three ethnic groups. At the remaining loci, there was mixed evidence by ethnic group. In meta-analysis, we found that, at 14 of the 19 loci, SNPs exceeded a nominal P < 0.05.
Conclusions
At five loci including the recently-discovered region on 1p13 near CELSR2/PSRC1/SORT1, the same SNP discovered in whites associates with blood lipids in non-Hispanic blacks and Mexican Americans. For the remaining loci, fine-mapping and resequencing will be required to definitively evaluate the relevance of each locus in individuals of African and Hispanic ancestries.
doi:10.1161/CIRCGENETICS.108.829473
PMCID: PMC3561731  PMID: 20031591
lipids; genetics; epidemiology; risk factors
3.  Using DNA fingerprints to infer familial relationships within NHANES III households 
Developing, targeting, and evaluating genomic strategies for population-based disease prevention require population-based data. In response to this urgent need, genotyping has been conducted within the Third National Health and Nutrition Examination (NHANES III), the nationally-representative household-interview health survey in the U.S. However, before these genetic analyses can occur, family relationships within households must be accurately ascertained. Unfortunately, reported family relationships within NHANES III households based on questionnaire data are incomplete and inconclusive with regards to actual biological relatedness of family members. We inferred family relationships within households using DNA fingerprints (Identifiler®) that contain the DNA loci used by law enforcement agencies for forensic identification of individuals. However, performance of these loci for relationship inference is not well understood. We evaluated two competing statistical methods for relationship inference on pairs of household members: an exact likelihood ratio relying on allele frequencies to an Identical By State (IBS) likelihood ratio that only requires matching alleles. We modified these methods to account for genotyping errors and population substructure. The two methods usually agree on the rankings of the most likely relationships. However, the IBS method underestimates the likelihood ratio by not accounting for the informativeness of matching rare alleles. The likelihood ratio is sensitive to estimates of population substructure, and parent-child relationships are sensitive to the specified genotyping error rate. These loci were unable to distinguish second-degree relationships and cousins from being unrelated. The genetic data is also useful for verifying reported relationships and identifying data quality issues. An important by-product is the first explicitly nationally-representative estimates of allele frequencies at these ubiquitous forensic loci.
doi:10.1198/jasa.2010.ap09258
PMCID: PMC2909633  PMID: 20664713
Forensics; allele sharing; population structure; CODIS; IBS; IBD
4.  Prevalence in the United States of Selected Candidate Gene Variants 
American Journal of Epidemiology  2008;169(1):54-66.
Population-based allele frequencies and genotype prevalence are important for measuring the contribution of genetic variation to human disease susceptibility, progression, and outcomes. Population-based prevalence estimates also provide the basis for epidemiologic studies of gene–disease associations, for estimating population attributable risk, and for informing health policy and clinical and public health practice. However, such prevalence estimates for genotypes important to public health remain undetermined for the major racial and ethnic groups in the US population. DNA was collected from 7,159 participants aged 12 years or older in Phase 2 (1991–1994) of the Third National Health and Nutrition Examination Survey (NHANES III). Certain age and minority groups were oversampled in this weighted, population-based US survey. Estimates of allele frequency and genotype prevalence for 90 variants in 50 genes chosen for their potential public health significance were calculated by age, sex, and race/ethnicity among non-Hispanic whites, non-Hispanic blacks, and Mexican Americans. These nationally representative data on allele frequency and genotype prevalence provide a valuable resource for future epidemiologic studies in public health in the United States.
doi:10.1093/aje/kwn286
PMCID: PMC2638878  PMID: 18936436
alleles; continental population groups; ethnic groups; genetics, population; genotype; nutrition surveys; polymorphism, genetic; prevalence

Results 1-4 (4)